Displaying publications 21 - 34 of 34 in total

Abstract:
Sort:
  1. Lai CW
    ScientificWorldJournal, 2014;2014:843587.
    PMID: 24782669 DOI: 10.1155/2014/843587
    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.
    Matched MeSH terms: Tungsten/chemistry*
  2. Lai SY, Ng KH, Cheng CK, Nur H, Nurhadi M, Arumugam M
    Chemosphere, 2021 Jan;263:128244.
    PMID: 33297191 DOI: 10.1016/j.chemosphere.2020.128244
    Photocatalytic remediation of industrial water pollution has courted intense attention lately due to its touted green approach. In this respect, Keggin-based polyoxometalates (POMs) as green solid acids in photocatalytic reaction possess superior qualities, viz. unique photoinduced charge-transfer properties, strong photooxidative-photoreductive ability, high chemical and thermal stability, and so forth. Unfortunately, it suffers from a large bandgap energy, low specific surface area, low recoverability, and scarce utilization in narrow absorption range. Therefore, the pollutant degradation performance is not satisfactory. Consequently, multifarious research to enhance the photocatalytic performance of Keggin-based POMs were reported, viz. via novel modifications and functionalizations through a variety of materials, inclusive of, inter alia, metal oxides, transition metals, noble metals, and others. In order to advocate this emerging technology, current review work provides a systematic overview on recent advancement, initiated from the strategized synthetic methods, followed by hierarchical enhancement and intensification process, at the same time emphasizes on the fundamental working principles of Keggin-based POM nanocomposites. By reviewing and summarizing the efforts adopted global-wide, this review is ended with providing useful outlooks for future studies. It is also anticipated to shed light on producing Keggin-based POM nanocomposites with breakthrough visible- and solar-light-driven photocatalytic performance against recalcitrant organic waste.
    Matched MeSH terms: Tungsten Compounds*
  3. Saepurahman, Abdullah MA, Chong FK
    J Hazard Mater, 2010 Apr 15;176(1-3):451-8.
    PMID: 19969415 DOI: 10.1016/j.jhazmat.2009.11.050
    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.
    Matched MeSH terms: Tungsten/chemistry*
  4. Bien DC, Saman RM, Badaruddin SA, Lee HW
    Nanoscale Res Lett, 2011;6(1):543.
    PMID: 21970543 DOI: 10.1186/1556-276X-6-543
    We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions.
    Matched MeSH terms: Tungsten
  5. Etesami M, Abouzari-Lotf E, Sha'rani SS, Miyake M, Moozarm Nia P, Ripin A, et al.
    Nanoscale, 2018 Jul 13;10(27):13212-13222.
    PMID: 29971298 DOI: 10.1039/c8nr02450b
    A novel polyoxometalate-based electrode was developed by incorporating phosphotungstic acid (PWA) in nylon-6,6 nanofiber, followed by carbonization. The developed PWA-carbon nanofiber (PWA-CNF) showed the characteristics of the dual-scale porosity of micro- and mesoporous substrate with surface area of around 684 m2 g-1. The compound exhibited excellent stability in vanadium electrolyte and battery cycling. Evaluation of electrocatalytic properties toward V2+/V3+ and VO2+/VO2+ redox couples indicated promising advantages in electron transfer kinetics and increasing energy efficiency, particularly for the VO2+/VO2+ couple. Moreover, the developed electrode exhibited substantially improved energy efficiency (14% higher than that of pristine carbon felt) in the single cell vanadium redox flow battery. This outstanding performance was attributed to high surface area and abundant oxygen-containing linkages in the developed electrode.
    Matched MeSH terms: Tungsten Compounds
  6. Nugraha MW, Zainal Abidin NH, Supandi, Sambudi NS
    Chemosphere, 2021 Aug;277:130300.
    PMID: 33774232 DOI: 10.1016/j.chemosphere.2021.130300
    In this present study, the tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing process. The WO3 was synthesized through a precipitation method, and CQDs were amino-functionalized using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrothermal method. It is revealed that N-CQDs incorporation into WO3 alters the bandgap energy, crystallinity, surface area, and photoluminescence (PL) properties. The produced composites exhibit higher monoclinic WO3 crystallinity, larger surface area, lower bandgap energy and quenched photoluminescence intensity. The as-prepared WO3/N-CQDs composites exhibit better adsorption and photocatalytic degradation performance of methylene blue (MB) than the pristine WO3. It shows that the combination of N-CQDs and WO3 enhanced visible light absorption, by lowering the bandgap energy of WO3 from 2.175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%, removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency achieved 84.61%. Moreover, the WO3/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased photocatalytic activity. The combination of N-CQDs and WO3 resulted in improved photodegradation, which shows its significant potential to be utilized for wastewater treatment.
    Matched MeSH terms: Tungsten
  7. Arifin K, Minggu LJ, Daud WR, Yamin BM, Daik R, Kassim MB
    PMID: 24184623 DOI: 10.1016/j.saa.2013.09.069
    A new homoleptic dithiolene tungsten complex, tris-{1,2-bis(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten, was successfully synthesized via a reaction of the thiophosphate ester and sodium tungstate. The thiophosphate ester was prepared from 3,5-dimethoxybenzaldehyde via benzoin condensation to produce the intermediate 1,2-bis-(3,5-dimethoxyphenyl)-2-hydroxy-ethanone compound, followed by a reaction of the intermediate with phosphorus pentasulfide. FTIR, UV-Vis spectroscopy, 1H NMR and 13C NMR and elemental analysis confirmed the product as tris{1,2-bis-(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten with the molecular formula of C54H54O12S6W. Crystals of the product adopted a monoclinic system with space group of P2(1)/n, where a=12.756(2) Å, b=21.560(3) Å, c=24.980(4) Å and β=103.998(3)°. Three thioester ligands were attached to the tungsten as bidentate chelates to form a distorted octahedral geometry. Density functional theory calculations were performed to investigate the molecular properties in a generalized-gradient approximation framework system using Perdew-Burke-Ernzerhof functions and a double numeric plus polarization basis set. The HOMO was concentrated on the phenyl ligands, while the LUMO was found along the W(S2C2)3 rings. The theoretical optical properties showed a slight blue shift in several low dielectric solvents. The solvatochromism effect was insignificant for high polar solvents.
    Matched MeSH terms: Tungsten/chemistry*
  8. Baig MR, Ariff FT, Yunus N
    Indian J Dent Res, 2011 Mar-Apr;22(2):210-2.
    PMID: 21891887 DOI: 10.4103/0970-9290.84288
    BACKGROUND: The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin.
    AIM: To investigate the effect of bur preparation on the surface roughness (R a ) of eclipse denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined.
    MATERIALS AND METHODS: Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine.
    RESULTS: One-way ANOVA revealed significant differences (P<0.05) in R a and SBS values for all the groups. Post-hoc Tukey's HSD test showed significant differences (P<0.05) between all the groups in the R a values. For SBS also there were significant differences (P<0.05), except between standard bur and control.
    CONCLUSIONS: 1) There was a statistically significant difference in the R a of Eclipse™ specimens prepared using different carbide burs (P<0.05). 2) There was a statistically significant difference in the relined SBS (P<0.05) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.
    Matched MeSH terms: Tungsten Compounds/chemistry
  9. Siti Fazlili Abdullah, Shahidan Radiman, Muhammad Azmi Abdul Hamid, Noor Baa’yah Ibrahim
    Sains Malaysiana, 2008;37:233-237.
    Oleic acid (OA) capped wolfram (VI) oxide, WO3 nanoparticles were chemically synthesized and characterized by means of Fourier Transform-Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The tribological properties of the capped WO3 nanoparticles as an additive in base oils were investigated using a four-ball machine. Results show that OA-capped WO3 nanoparticles are able to prevent water adsorption and capable of being dispersed stable in organic solvents which is base oils. The as-prepared capped WO3 nanoparticles have an average size of 15 nm. In addition, OA-capped WO3 nanoparticles as an additive in base oils perform good anti-wear (AW) and anti-friction (AF) properties owing to the formation of a boundary film.
    Matched MeSH terms: Tungsten
  10. Jamal AbuAlRoos N, Azman MN, Baharul Amin NA, Zainon R
    Phys Med, 2020 Oct;78:48-57.
    PMID: 32942196 DOI: 10.1016/j.ejmp.2020.08.017
    PURPOSE: The main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.

    MATERIALS AND METHODS: The elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40-50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.

    RESULTS: This study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19-5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.

    CONCLUSION: This study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.

    Matched MeSH terms: Tungsten
  11. Shi X, Karachi A, Hosseini M, Yazd MS, Kamyab H, Ebrahimi M, et al.
    Ultrason Sonochem, 2020 Nov;68:104460.
    PMID: 30712851 DOI: 10.1016/j.ultsonch.2019.01.018
    The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g- of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.
    Matched MeSH terms: Tungsten Compounds
  12. Kunnasegaran R, Chan YH
    Malays Orthop J, 2017 Mar;11(1):64-67.
    PMID: 28435578 DOI: 10.5704/MOJ.1703.007
    The treatment of fractures in osteopetrosis can be complicated and difficult. We describe the use of an industrial grade tungsten carbide drill bit in the treatment of one of these complex fractures. An industrial grade tungsten carbide drill bit was used to fashion a medullary canal in the surgical treatment of a left peri-implant fracture of the neck of femur in a patient with osteopetrosis. The patient was successfully treated with a hemiarthroplasty with good functional outcomes. A tungsten carbide drill bit serves as an effective and safe option in the treatment of osteopetrotic femoral neck fractures.
    Matched MeSH terms: Tungsten Compounds
  13. Bin Rafiq MKS, Amin N, Alharbi HF, Luqman M, Ayob A, Alharthi YS, et al.
    Sci Rep, 2020 Jan 21;10(1):771.
    PMID: 31964954 DOI: 10.1038/s41598-020-57596-5
    Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfide (WS2) thin films on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on film characteristics and determine the optimized conditions for suitable application in thin-film solar cells. Morphological, structural, and opto-electronic properties of as-grown films were investigated and analyzed for different deposition powers. All the WS2 films exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS2 films with bandgap of 2.2 eV, carrier concentration of 1.01 × 1019 cm-3, and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS2 thin film was successfully incorporated as a window layer for the first time in CdTe/WS2 solar cell. Initial investigations revealed that the newly incorporated WS2 window layer in CdTe solar cell demonstrated photovoltaic conversion efficiency of 1.2% with Voc of 379 mV, Jsc of 11.5 mA/cm2, and FF of 27.1%. This study paves the way for WS2 thin film as a potential window layer to be used in thin-film solar cells.
    Matched MeSH terms: Tungsten
  14. Abdul Aziz, A., Abu Kasim, N.H., Ramasindarum, C., Mohamad Yusof, M.Y.P., Paiizi, M., Ahmad, R.
    Ann Dent, 2011;18(1):1-7.
    MyJurnal
    The aim of this study was to assess the wear of tungsten carbide burs and round rotary diamond instruments through measurements of rake angle and visual observations respectively under a field emission scanning electron microscope. Sixty short and long head pear-shaped tungsten carbide burs and 18 round rotary diamond instruments that had been used to complete < 5, > 5 and > 10 cavity preparations (n=10/group) were selected from the 3rd and 4th year dental students, Faculty of Dentistry, University of Malaya. There were two control groups consisting of long and short tungsten carbide burs of ten each. Two-way ANOVA was used to analyse the rake angle data. The data from the two control groups were collectively analysed following multiple paired t-test (p>.05) which showed no significant difference between the two types of tungsten carbide bur (short and long head). The mean rake angle of the control group was significantly higher (p < .05) compared to the < 5, > 5 and > 10 cavity preparation groups. The rake angle of the > 10 cavity preparation group was significantly lower than the other two test groups (p < .05). Round rotary diamond instruments in the < 5 cavity preparation group showed intact diamond particles with distinct cutting facets comparable to the control group. However, diamonds instruments in the > 5 and > 10 cavity preparation groups showed blunt diamond particles. In conclusion, wear of tungsten carbide burs and round rotary diamond instruments were evident after repeated use. Wear was more pronounced when instruments were used to prepare more than ten cavities.
    Matched MeSH terms: Tungsten Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links