Displaying publications 21 - 40 of 445 in total

Abstract:
Sort:
  1. Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, et al.
    Molecules, 2023 Sep 21;28(18).
    PMID: 37764521 DOI: 10.3390/molecules28186746
    Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
    Matched MeSH terms: Virulence Factors
  2. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Ashtiani FA
    Plant Dis, 2012 Aug;96(8):1227.
    PMID: 30727084 DOI: 10.1094/PDIS-03-12-0262-PDN
    Symptoms of gray leaf spot were first observed in June 2011 on pepper (Capsicum annuum) plants cultivated in the Cameron Highlands and Johor State, the two main regions of pepper production in Malaysia (about 1,000 ha). Disease incidence exceeded 70% in severely infected fields and greenhouses. Symptoms initially appeared as tiny (average 1.3 mm in diameter), round, orange-brown spots on the leaves, with the center of each spot turning gray to white as the disease developed, and the margin of each spot remaining dark brown. A fungus was isolated consistently from the lesions using sections of symptomatic leaf tissue surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto PDA and V8 agar media (3). After 7 days, the fungal colonies were gray, dematiaceous conidia had formed at the end of long conidiophores (19.2 to 33.6 × 12.0 to 21.6 μm), and the conidia typically had two to six transverse and one to four longitudinal septa. Fifteen isolates were identified as Stemphylium solani on the basis of morphological criteria described by Kim et al. (3). The universal primers ITS5 and ITS4 were used to amplify the internal transcribed spacer region (ITS1, 5.8, and ITS2) of ribosomal DNA (rDNA) of a representative isolate (2). A 570 bp fragment was amplified, purified, sequenced, and identified as S. solani using a BLAST search with 100% identity to the published ITS sequence of an S. solani isolate in GenBank (1). The sequence was deposited in GenBank (Accession No. JQ736024). Pathogenicity of the fungal isolate was tested by inoculating healthy pepper leaves of cv. 152177-A. A 20-μl drop of conidial suspension (105 spores/ml) was used to inoculate each of four detached, 45-day-old pepper leaves placed on moist filter papers in petri dishes (4). Four control leaves were inoculated similarly with sterilized, distilled water. The leaves were incubated at 25°C at 95% relative humidity for 7 days. Gray leaf spot symptoms similar to those observed on the original pepper plants began to develop on leaves inoculated with the fungus after 3 days, and S. solani was consistently reisolated from the leaves. Control leaves did not develop symptoms and the fungus was not reisolated from these leaves. Pathogenicity testing was repeated with the same results. To our knowledge, this is the first report of S. solani causing gray leaf spot on pepper in Malaysia. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. P. S. Camara et al. Mycologia 94:660, 2002. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.
    Matched MeSH terms: Virulence
  3. Aslam, M.W.
    Jurnal Veterinar Malaysia, 2019;31(2):1-12.
    MyJurnal
    In recent years, Rhodococcus equi has emerged as pathogen of importance in respiratory and non-respiratory infectious diseases of animals and humans. Its distribution is worldwide and incidence of disease is increasing in nonequine species like cats and humans. Sporadic infection in human and cat is hypothesized to infect immunocompromised cases largely. While predominantly in foals, infection is quite endemic/epidemic in nature depending on virulence of strain, and incidence is 10 – 20% since birth till weaning. Mode of acquisition is quite variable in humans, cats and foals and depends on the route of exposure. Pathogenesis is well understood in natural host but in cats and humans it is still in its infancy because of the manifestation of unusual cases with low to no exposure to contaminated elements. Clinical signs depend on the site of infection but respiratory manifestations are quite common in foals and human cases. In cats extra-pulmonary disorders are hypothesized as more common presentation. Definitive diagnosis is based on the microbiological culture and cytology from tracheobronchial aspirate for respiratory cases and site of sample for non-respiratory lesions. White blood cells and fibrinogen have some correlation in degree of diagnosis in foals but not in cats and humans. Macrolides especially clarithromycin along with rifampin are considered best combination at the moment and recently resistance is being reported against erythromycin and rifampin. In foals, consensus statements by ACVIM published detailed control and preventions but in humans and cats so far hygiene and isolation of infected patients are for the time being the methods to control nosocomial spread.
    Matched MeSH terms: Virulence
  4. Madaha EL, Mienie C, Gonsu HK, Bughe RN, Fonkoua MC, Mbacham WF, et al.
    PLoS One, 2020;15(9):e0238390.
    PMID: 32886694 DOI: 10.1371/journal.pone.0238390
    Pseudomonas aeruginosa has been implicated in a wide range of post-operation wound and lung infections. A wide range of acquired resistance and virulence markers indicate surviving strategy of P. aeruginosa. Complete-genome analysis has been identified as efficient approach towards understanding the pathogenicity of this organism. This study was designed to sequence the entire genome of P. aeruginosa UY1PSABAL and UY1PSABAL2; determine drug-resistance profiles and virulence factors of the isolates; assess factors that contribute toward stability of the genomes; and thereafter determine evolutionary relationships between the strains and other isolates from similar sources. The genomes of the MDR P. aeruginosa UY1PSABAL and UY1PSABAL2 were sequenced on the Illumina Miseq platform. The raw sequenced reads were assessed for quality using FastQC v.0.11.5 and filtered for low quality reads and adapter regions using Trimmomatic v.0.36. The de novo genome assembly was made with SPAdes v.3.13 and annotated using Prokka v.2.1.1 annotation pipeline; Rapid Annotation using Subsytems Technology (RAST) server v.2.0; and PATRIC annotation tool v.3.6.2. Antimicrobial resistance genes and virulence determinants were searched through the functional annotation data generated from Prokka, RAST and PATRIC annotation pipelines; In addition to ResFinder and Comprehensive Antibiotic Resistance Database (CARD) which were employed to determine resistance genes. The PHAge Search Tool Enhanced Release (PHASTER) web server was used for the rapid identification and annotation of prophage sequences within bacterial genome. Predictive secondary metabolites were identified with AntiSMASH v.5.0. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and cas genes regions were also investigated with the CRISPRone and CRISPRFinder server. The genome sizes of 7.0 and 6.4 Mb were determined for UY1PSABAL and UY1PSABAL2 strains with G+C contents of 66.1% and 66.48% respectively. β-lactamines resistance genes blaPAO, aminoglycoside phosphorylating enzymes genes aph(3')-IIb, fosfomycine resistance gene fosA, vancomycin vanW and tetracycline tetA were among identified resistance genes harboured in both isolates. UY1PSABAL bore additional aph(6)-Id, aph(3'')-Ib, ciprofloxacin-modifying enzyme crpP and ribosomal methylation enzyme rmtB. Both isolates were found harbouring virulence markers such as flagella and type IV pili; and also present various type III secretion systems such as exoA, exoS, exoU, exoT. Secondary metabolites such as pyochelin and pyoverdine with iron uptake activity were found within the genomes as well as quorum-sensing systems, and various fragments for prophages and insertion sequences. Only the UY1PSABAL2 contains CRISPR-Cas system. The phylogeny revealed a very close evolutionary relationship between UY1PSABAL and the similar strain isolated from Malaysia; the same trend was observed between UY1PSABAL2 and the strain from Chinese origin. Complete analyses of the entire genomes provide a wide range of information towards understanding pathogenicity of the pathogens in question.
    Matched MeSH terms: Virulence/genetics
  5. Lesley, M.B., Velnetti, L., Fazira, A.A., Kasing, A., Samuel, L., Micky, V., et al.
    MyJurnal
    This study was conducted to detect the presence of Listeria monocytogenes (L. monocytogenes)
    and screen for its antibiotic susceptibility characteristic from wildlife and water samples at
    Kubah National Park, Sarawak, Malaysia. Samples collected were incubated and streaked on
    selective medium PALCAM agar to confirm the presence of Listeria spp. before they were
    further tested using molecular analysis. Specific Polymerase Chain Reaction (PCR) assay were
    performed to target specific virulence gene, haemolysin gene, hlyA to further distinguish the
    presence of this pathogenic bacteria in the samples. Overall, out of the 30 samples tested, 10
    samples were confirmed as to contain L. monocytogenes strains and selected to subsequent
    antibiotic susceptibility test. Susceptibility patterns to 10 antibiotics were investigated
    among the L. monocytogenes strains. All strains were uniformly resistant to tetracycline and
    erythromycin. On the other hand, all strains were sensitive to gentamycin and tobramycin. The
    multiple antibiotic resistance shown by the strains in this study indicate the potential health
    hazard associated with the possible transmission between wildlife and water to its surrounding
    environment especially visitors and workers of Kubah National Park, Sarawak, Malaysia.
    Matched MeSH terms: Virulence
  6. Getachew Y, Hassan L, Zakaria Z, Zaid CZ, Yardi A, Shukor RA, et al.
    J Appl Microbiol, 2012 Nov;113(5):1184-95.
    PMID: 22906187 DOI: 10.1111/j.1365-2672.2012.05406.x
    This study determined the risk factors and characteristics of vancomycin-resistant Enterococci (VRE) among individuals working with animals in Malaysia.
    Matched MeSH terms: Virulence Factors/genetics
  7. Pauzi NA, Mohamad N, Azzam-Sayuti M, Yasin ISM, Saad MZ, Nasruddin NS, et al.
    Vet World, 2020 Oct;13(10):2166-2171.
    PMID: 33281351 DOI: 10.14202/vetworld.2020.2166-2171
    Background and Aim: Aeromonas hydrophila is a major cause of bacterial infections affecting a wide range of warm water fishes worldwide. In Malaysia, A. hydrophila isolations from diseased fishes were previously reported; however, with limited information. The present study investigates the antibiotic susceptibility and pathogenicity of A. hydrophila isolated from farmed red hybrid tilapia (Oreochromis spp.) in Malaysia.

    Materials and Methods: A. hydrophila was biochemically identified and subjected to antibiotic susceptibility tests. The isolate was then intraperitoneally injected into red hybrid tilapia, and the mortality, clinicopathological changes, and LD50 were determined up to 240 h post-infection (hpi).

    Results: The isolate demonstrated multiple antibiotic resistances (MAR) toward amikacin, ampicillin, cefotaxime, amoxicillin, trimethoprim-sulfamethoxazole, erythromycin, and streptomycin, with a MAR index of 0.5. The experimental infection of A. hydrophila at 105 CFU/mL in the red hybrid tilapia resulted in 100% mortality at 240 hpi. The LD50 was determined at 1.1×104 CFU/mL. Infected fish demonstrated occasional erratic swimming patterns, localized hemorrhages and depigmentation on the body and operculum areas, fin erosion, enlargement of the gall bladder, and hemorrhage in internal organs. Microscopic observation of infected fish revealed brain congestion, tubular necrosis, and glomerular shrinkage in the kidneys, necrosis of hepatocytes, and congestion of blood vessels in the liver.

    Conclusion: The high virulence of A. hydrophila to the red hybrid tilapia emphasizes the importance of active, on-going monitoring of its prevalence in Malaysian tilapia farming.

    Matched MeSH terms: Virulence
  8. Badrun R, Abu Bakar N, Laboh R, Redzuan R, Bala Jaganath I
    Genome Announc, 2017 Jun 01;5(22).
    PMID: 28572313 DOI: 10.1128/genomeA.00408-17
    Blood disease bacterium A2 HR-MARDI was isolated from banana plants infected with banana blood disease and which were planted in Kuala Kangsar, Malaysia. Here, we report a draft genome sequence of blood disease bacterium A2 HR-MARDI, which could provide important information on the virulence mechanism of this pathogen.
    Matched MeSH terms: Virulence
  9. Galinski MR, Barnwell JW
    Trends Parasitol, 2009 May;25(5):200-4.
    PMID: 19345613 DOI: 10.1016/j.pt.2009.02.002
    Four human deaths caused by Plasmodium knowlesi, a simian malaria species, are stimulating a surge of public health interest and clinical vigilance in vulnerable areas of Southeast Asia. We, and other colleagues, emphasize that these cases, identified in Malaysia, are a clear warning that health facilities and clinicians must rethink the diagnosis and treatment of malaria cases presumed to be caused by a less virulent human malaria species, Plasmodium malariae.
    Matched MeSH terms: Virulence
  10. Solomon T, Ni H, Beasley DW, Ekkelenkamp M, Cardosa MJ, Barrett AD
    J Virol, 2003 Mar;77(5):3091-8.
    PMID: 12584335
    Since it emerged in Japan in the 1870s, Japanese encephalitis has spread across Asia and has become the most important cause of epidemic encephalitis worldwide. Four genotypes of Japanese encephalitis virus (JEV) are presently recognized (representatives of genotypes I to III have been fully sequenced), but its origin is not known. We have determined the complete nucleotide and amino acid sequence of a genotype IV Indonesian isolate (JKT6468) which represents the oldest lineage, compared it with other fully sequenced genomes, and examined the geographical distribution of all known isolates. JKT6468 was the least similar, with nucleotide divergence ranging from 17.4 to 19.6% and amino acid divergence ranging from 4.7 to 6.5%. It included an unusual series of amino acids at the carboxy terminus of the core protein unlike that seen in other JEV strains. Three signature amino acids in the envelope protein (including E327 Leu-->Thr/Ser on the exposed lateral surface of the putative receptor binding domain) distinguished genotype IV strains from more recent genotypes. Analysis of all 290 JEV isolates for which sequence data are available showed that the Indonesia-Malaysia region has all genotypes of JEV circulating, whereas only more recent genotypes circulate in other areas (P < 0.0001). These results suggest that JEV originated from its ancestral virus in the Indonesia-Malaysia region and evolved there into the different genotypes which then spread across Asia. Our data, together with recent evidence on the origins of other emerging viruses, including dengue virus and Nipah virus, imply that tropical southeast Asia may be an important zone for emerging pathogens.
    Matched MeSH terms: Virulence
  11. Dunster LM, Gibson CA, Stephenson JR, Minor PD, Barrett AD
    J Gen Virol, 1990 Mar;71 ( Pt 3):601-7.
    PMID: 2155996
    The ability of passage in HeLa cells to attenuate flaviviruses was investigated for three different strains of the mosquito-borne West Nile (WN) virus and two tick-borne viruses, louping-ill and Langat. One strain of WN virus, Sarawak, was attenuated 4000-fold for adult mice by intraperitoneal or intranasal challenge after six HeLa passages. The HeLa-passaged virus was also found to be antigenically different and temperature-sensitive in its growth characteristics compared with the parent. After six HeLa cell passages the Egypt 101 and Smithburn strains of WN virus lost their ability to infect monkey kidney cells and no longer killed adult mice, although inoculated animals became sick for several days. In contrast, two tick-borne flaviviruses remained as virulent for mice after six HeLa passages as the parent non-HeLa-passaged virus. Neither of the tick-borne viruses exhibited characteristics associated with temperature sensitivity. The results, therefore, indicate that the mosquito-borne, but not tick-borne, flaviviruses can be attenuated by very few passages in HeLa cells. This observation may provide a model system with which to analyse the molecular basis of attenuation and/or virulence of mosquito-borne flaviviruses.
    Matched MeSH terms: Virulence
  12. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, et al.
    J Virol, 2014 Sep 1;88(17):9947-62.
    PMID: 24942584 DOI: 10.1128/JVI.01304-14
    The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II.
    Matched MeSH terms: Virulence
  13. Balmas V, Corda P, Marcello A, Bottalico A
    Plant Dis, 2000 Jul;84(7):807.
    PMID: 30832117 DOI: 10.1094/PDIS.2000.84.7.807B
    Fusarium nygamai Burgess & Trimboli was first described in 1986 in Australia (1) and subsequently reported in Africa, China, Malaysia, Thailand, Puerto Rico, and the United States. F. nygamai has been reported on sorghum, millet, bean, cotton, and in soil where it exists as a colonizer of living plants or plant debris. F. nygamai was also reported as a pathogen of the witch-weed Striga hermonthica (Del.) Benth. To our knowledge, no reports are available on its pathogenicity on crops of economic importance. In a survey of species of Fusarium causing seedling blight and foot rot of rice (Oryza sativa L.) carried out in Sardinia (Oristano, S. Lucia), F. nygamai was isolated in association with other Fusarium species-F. moniliforme, F. proliferatum, F. oxysporum, F. solani, F. compactum, and F. equiseti. Infected seedlings exhibited a reddish brown cortical discoloration, which was more intense in older plants. The identification of F. nygamai was based on monoconidial cultures grown on carnation leaf-piece agar (CLA) (2). The shape of macroconidia, the formation of microconidia in short chains and false heads, and the presence of chlamydospores were used as the criteria for identification. Two pathogenicity tests comparing one isolate of F. nygamai with one isolate of F. moniliforme were conducted on rice cv. Arborio sown in artificially infested soil in a greenhouse at 22 to 25°C. The inoculum was prepared by growing both Fusarium species in cornmeal sand (1:30 wt/wt) at 25°C for 3 weeks. This inoculum was added to soil at 20 g per 500 ml of soil. Pre- and post-emergence damping-off was assessed. Both F. nygamai and F. moniliforme reduced the emergence of seedlings (33 to 59% and 25 to 50%, respectively, compared to uninoculated control). After 25 days, the seedlings in infested soil exhibited a browning of the basal leaf sheaths, which progressed to a leaf and stem necrosis. Foot rot symptoms caused by F. nygamai and F. moniliforme were similar, but seedlings infected by F. nygamai exhibited a more intense browning on the stem base and a significant reduction of plant height at the end of the experiment. Either F. nygamai or F. moniliforme were consistently isolated from symptomatic tissue from the respective treatments. References: (1) L. W. Burgess and D. Trimboli. Mycologia 78:223,1986. (2) N. L. Fisher et al. Phytopathology 72:151,1982.
    Matched MeSH terms: Virulence
  14. Ganapathy K, Bradbury JM
    Avian Pathol, 1999 Jun;28(3):229-37.
    PMID: 26915378 DOI: 10.1080/03079459994713
    Mycoplasma imitans (Mim) has been isolated from ducks, geese and partridges, and is closely related to Mycoplasma gallisepticum (Mg). The pathogenicity of Mim for chicks was investigated in single and mixed infections with infectious bronchitis virus (IBV) by giving IBV strain M41 at 1-day-old and Mim 2 days later. Single infections with IBV or Mim were also performed. No clinical signs or gross lesions were seen in chicks infected with Mim or uninfected control chicks, but they were seen in the other two groups. Clinical scores were consistently higher in birds with mixed infections than those infected with IBV alone, and were significantly higher (P < 0.05) between days 7 and 14. More birds developed sinusitis, tracheitis and airsacculitis (with greater severity) in the mixed than the single IBV infections. Mim was recovered more frequently and in greater numbers from the respiratory tract of birds with mixed than single infections. It was recovered from the lower trachea, air sacs and lungs only in mixed infections. Seroconversion to Mim occurred by day 14 in mixed infections, but not until day 21 in single infections. It appears that Mim can act synergistically with IBV in young chickens in a similar manner to Mg, although Mg may act as a primary pathogen under some circumstances.
    Matched MeSH terms: Virulence
  15. Azizan E, Brown M
    Malays J Pathol, 2020 Dec;42(3):363-367.
    PMID: 33361716
    In 2003, it was discovered that the entry receptor for the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) is a protein called the angiotensin-converting enzyme 2 (ACE2). This protein is present in a number of cell types, including those from the respiratory tract. Soon after the emergence of SARS-CoV-2 that is responsible for the disease Covid-19, scientists found that ACE2 was also used by the new coronavirus to infect cells. This opened some interesting possibilities to explain the striking variation in risks of catching and dying from Covid-19. The best recognised of these are the much higher risk of serious illness in older than younger people, in men than women, and in those with pre-existing comorbidities such as hypertension and cardiovascular diseases. There are several ways in which the ACE2 protein might contribute to this variation. The most obvious would be if there is more ACE2, there would be more entry points for the virus to infect the cell, e.g. in older people or in men. However, the evidence for this is rather small, partly because it is not that easy to obtain representative healthy tissues. Alternatively, it could be related to ACE2 membership of a family of proteins that has one end of the protein anchored inside the cell while most of the protein protrudes from the outside of the cell which therefore can be shed when cleaved by proteases at the cell membrane. Herein we review current evidence and theories of ACE2 role on SARS-CoV-2 infectivity and Covid-19 severity.
    Matched MeSH terms: Virulence
  16. Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z
    Vet Microbiol, 2020 Feb;241:108549.
    PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549
    Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
    Matched MeSH terms: Virulence
  17. Ugwu IC, Lee-Ching L, Ugwu CC, Okoye JOA, Chah KF
    Iran J Vet Res, 2020;21(3):180-187.
    PMID: 33178295
    Background: Avian pathogenic Escherichia coli (APEC) strains have been associated with various disease conditions in avian species due to virulence attributes associated with the organism.

    Aims: This study was carried out to determine the in vitro pathogenic characteristics and virulence encoding genes found in E. coli strains associated with colibacillosis in chickens.

    Methods: Fifty-two stock cultures of E. coli strains isolated from chickens diagnosed of colibacillosis were tested for their ability to produce haemolysis on blood agar and take up Congo red dye. Molecular characterization was carried out by polymerase chain reaction (PCR) amplification of virulence encoding genes associated with APEC.

    Results: Eleven (22%) and 41 (71%) were positive for haemolysis on 5% sheep red blood agar and Congo red agar, respectively. Nine virulence-associated genes were detected as follows: FimH (96%), csgA (52%), iss (48%), iut (33%), tsh (21%), cva (15%), kpsII (10%), pap (2%), and felA (2%).

    Conclusion: The APEC strains exhibited virulence properties and harbored virulence encoding genes which could be a threat to the poultry population and public health. The putative virulence genes were diverse and different in almost all isolate implying that pathogenesis was multi-factorial and the infection was multi-faceted which could be a source of concern in the detection and control of APEC infections.

    Matched MeSH terms: Virulence
  18. Barati A, Ghaderpour A, Chew LL, Bong CW, Thong KL, Chong VC, et al.
    Int J Environ Res Public Health, 2016 Apr 15;13(4):426.
    PMID: 27092516 DOI: 10.3390/ijerph13040426
    Klebsiella pneumoniae is an opportunistic pathogen that is responsible for causing nosocomial and community-acquired infections. Despite its common presence in soil and aquatic environments, the virulence potential of K. pneumoniae isolates of environmental origin is largely unknown. Hence, in this study, K. pneumoniae isolated from the estuarine waters and sediments of the Matang mangrove estuary were screened for potential virulence characteristics: antibiotic susceptibility, morphotype on Congo red agar, biofilm formation, presence of exopolysaccharide and capsule, possession of virulence genes (fimH, magA, ugE, wabG and rmpA) and their genomic fingerprints. A total of 55 strains of K. pneumoniae were isolated from both human-distributed sites (located along Sangga Besar River) and control sites (located along Selinsing River) where less human activity was observed, indicated that K. pneumoniae is ubiquitous in the environment. However, the detection of potentially virulent strains at the downstream of Kuala Sepetang village has suggested an anthropogenic contamination source. In conclusion, the findings from this study indicate that the Matang mangrove estuary could harbor potentially pathogenic K. pneumoniae with risk to public health. More studies are required to compare the environmental K. pneumoniae strains with the community-acquired K. pneumoniae strains.
    Matched MeSH terms: Virulence Factors/genetics
  19. Letchumanan V, Yin WF, Lee LH, Chan KG
    Front Microbiol, 2015;6:33.
    PMID: 25688239 DOI: 10.3389/fmicb.2015.00033
    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.
    Matched MeSH terms: Virulence
  20. Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, et al.
    Sci Rep, 2014;4:7245.
    PMID: 25430794 DOI: 10.1038/srep07245
    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography-mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.
    Matched MeSH terms: Virulence Factors/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links