Displaying publications 21 - 40 of 510 in total

Abstract:
Sort:
  1. Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D
    Bioengineered, 2022 Apr;13(4):10412-10453.
    PMID: 35441582 DOI: 10.1080/21655979.2022.2056823
    The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
    Matched MeSH terms: Water Purification*
  2. Choong ZY, Lin KA, Lisak G, Lim TT, Oh WD
    J Hazard Mater, 2022 03 15;426:128077.
    PMID: 34953256 DOI: 10.1016/j.jhazmat.2021.128077
    Catalytic activation of peroxymonosulfate (PMS) and peroxydisulfate (PDS) (or collectively known as persulfate, PS) using carbocatalyst is increasingly gaining attention as a promising technology for sustainable recalcitrant pollutant removal in water. Single heteroatom doping using either N, S, B or P is widely used to enhance the performance of the carbocatalyst for PS activation. However, the performance enhancement from single heteroatom doping is limited by the type of heteroatom used. To further enhance the performance of the carbocatalyst beyond the limit of single heteroatom doping, multi-heteroatom doping can be conducted. This review aims to provide a state-of-the-art overview on the development of multi-heteroatom-doped carbocatalyst for PS activation. The potential synergistic and antagonistic interactions of various heteroatoms including N and B, N and S, N and P, and N and halogen for PS activation are evaluated. Thereafter, the preparation strategies to develop multi-heteroatom-doped carbocatalyst including one-step and multi-step preparation approaches along with the characterization techniques are discussed. Evidence and summary of the performance of multi-heteroatom-doped carbocatalyst for various recalcitrant pollutants removal via PS activation are also provided. Finally, the prospects of employing multi-heteroatom-doped carbocatalyst including the need to study the correlation between different heteroatom combination, surface moiety type, and amount of dopant with the PS activation mechanism, identifying the best heteroatom combination, improving the durability of the carbocatalyst, evaluating the feasibility for full-scale application, developing low-cost multi-heteroatom-doped carbocatalyst, and assessing the environmental impact are also briefly discussed.
    Matched MeSH terms: Water Purification*
  3. Nasir HM, Wee SY, Aris AZ, Abdullah LC, Ismail I
    Chemosphere, 2022 Mar;291(Pt 1):132726.
    PMID: 34718023 DOI: 10.1016/j.chemosphere.2021.132726
    Persistent endocrine-disrupting compounds (EDCs) in bodies of water are a concern for human health and constitute an environmental issue, even if present in trace amounts. Conventional treatment systems do not entirely remove EDCs from discharge effluent. Due to the ultra-trace level of EDCs which affect human health and pose an environmental issue, developing new approaches and techniques to remove these micropollutants from the discharged effluent is vital. This review discusses the most common methods of eliminating EDCs through preliminary, primary, secondary and tertiary treatments. The adsorption process is favoured for EDC removal, as it is an economical and straightforward option. The NABC aspects, which are the need, approach, benefits and challenges, were analysed based on existing circumstances, highlighting biochar as a green and renewable adsorbent for the removal of organic contaminants. From the environmental point of view, the effectiveness of this method, which uses natural fibre from the kenaf plant as a porous and economical biochar material with a selected lignocellulosic biomass, provides insights into the advantages of biochar-derived adsorbents. Essentially, the improvement of the natural fibre as an adsorbent is a focus, using carbonisation, activation, and the physiochemical process to enhance the adsorption ability of the material for pollutants in bodies of water. This output will complement sustainable water management approaches presented in previous studies for combating the emerging pollutant crisis via novel green and environmentally safe options.
    Matched MeSH terms: Water Purification*
  4. Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA
    Chemosphere, 2022 Mar;290:133319.
    PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319
    The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
    Matched MeSH terms: Water Purification*
  5. Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132559.
    PMID: 34655643 DOI: 10.1016/j.chemosphere.2021.132559
    Global production of shellfish aquaculture is steadily increasing owing to the growing market demands for shellfish. The intensification of shellfish aquaculture to maximize production rate has led to increased generation of aquaculture waste streams, particularly the effluents and shellfish wastes. If not effectively managed, these wastes could pose serious threats to human health and the ecosystem while compromising the overall sustainability of the industry. The present work comprehensively reviews the source, composition, and environmental implications of shellfish wastes and aquaculture wastewater. Moreover, recent advancements in the valorization of shellfish wastes into value-added biochar via emerging thermochemical and modification techniques are scrutinized. The utilization of the produced biochar in removing emerging pollutants from aquaculture wastewater is also discussed. It was revealed that shellfish waste-derived biochar exhibits relatively higher adsorption capacities (300-1500 mg/g) compared to lignocellulose biochar (<200 mg/g). The shellfish waste-derived biochar can be effectively employed for the removal of various contaminants such as antibiotics, heavy metals, and excessive nutrients from aquaculture wastewater. Finally, future research priorities and challenges faced to improve the sustainability of the shellfish aquaculture industry to effectively support global food security are elaborated. This review envisages that future studies should focus on the biorefinery concept to extract more useful compounds (e.g., carotenoid, chitin) from shellfish wastes for promoting environmental-friendly aquaculture.
    Matched MeSH terms: Water Purification*
  6. Subramaniam MN, Goh PS, Kanakaraju D, Lim JW, Lau WJ, Ismail AF
    Environ Sci Pollut Res Int, 2022 Feb;29(9):12506-12530.
    PMID: 34101123 DOI: 10.1007/s11356-021-14676-x
    The presence of conventional and emerging pollutants infiltrating into our water bodies is a course of concern as they have seriously threatened water security. Established techniques such as photocatalysis and membrane technology have proven to be promising in removing various persistent organic pollutants (POP) from wastewaters. The emergence of hybrid photocatalytic membrane which incorporates both photocatalysis and membrane technology has shown greater potential in treating POP laden wastewater based on their synergistic effects. This article provides an in-depth review on the roles of both photocatalysis and membrane technology in hybrid photocatalytic membranes for the treatment of POP containing wastewaters. A concise introduction on POP's in terms of examples, their origins and their effect on a multitude of organisms are critically reviewed. The fundamentals of photocatalytic mechanism, current directions in photocatalyst design and their employment to treat POP's are also discussed. Finally, the challenges and future direction in this field are presented.
    Matched MeSH terms: Water Purification*
  7. Bilal M, Lam SS, Iqbal HMN
    Environ Pollut, 2022 Jan 15;293:118582.
    PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582
    The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
    Matched MeSH terms: Water Purification*
  8. Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Hussain I, et al.
    Chemosphere, 2022 Jan;286(Pt 1):131651.
    PMID: 34346345 DOI: 10.1016/j.chemosphere.2021.131651
    Nanostructured photocatalysts commonly offered opportunities to solve issues scrutinized with the environmental challenges caused by steep population growth and rapid urbanization. This photocatalyst is a controllable characteristic, which can provide humans with a clean and sustainable ecosystem. Over the last decades, one of the current thriving research focuses on visible-light-driven CeO2-based photocatalysts due to their superior characteristics, including unique fluorite-type structure, rigid framework, and facile reducing oxidizing properties of cerium's tetravalent (Ce4+) and trivalent (Ce3+) valence states. Notwithstanding, owing to its inherent wide energy gap, the solar energy utilization efficiency is low, which limits its application in wastewater treatment. Numerous modifications of CeO2 have been employed to enhance photodegradation performances, such as metals and non-metals doping, adding support materials, and coupling with another semiconductor. Besides, all these doping will form a different heterojunction and show a different way of electron-hole migration. Compared to conventional heterojunction, advanced heterojunction types such as p-n heterojunction, Z-scheme, Schottky junction, and surface plasmon resonance effect exhibit superior performance for degradation owing to their excellent charge carrier separation, and the reaction occurs at a relatively higher redox potential. This review attends to providing deep insights on heterojunction mechanisms and the latest progress on photodegradation of various contaminants in wastewater using CeO2-based photocatalysts. Hence, making the CeO2 photocatalyst more foresee and promising to further development and research.
    Matched MeSH terms: Water Purification*
  9. Yogarathinam LT, Velswamy K, Gangasalam A, Ismail AF, Goh PS, Subramaniam MN, et al.
    Chemosphere, 2022 Jan;286(Pt 3):131822.
    PMID: 34416593 DOI: 10.1016/j.chemosphere.2021.131822
    In this study, fouling mechanism and modelling analysis of synthetic lignocellulose biomass and agricultural palm oil effluent was studied using polyethersulfone (PES) ultrafiltration (UF) 10 kDa membrane. The impact of process variables (transmembrane pressure (TMP), pH and concentration of feed solution) on lignocellulosic flux was analysed using pore blocking model. The feasible approaches on utilising deep learning artificial neural network (ANN) to predict smaller flux datasets are studied. Among the input variables, pH of lignin feed solution has significant control towards flux and lignin rejection coefficient for both lignin and lignocellulosic solution. Alteration in the structure of lignin at different pH conditions contributed in the improvement of lignin rejection coefficient to 0.98 at the feed pH of 9. A maximum steady state flux of 52.03 L/m2h was observed at the lower lignin concentration (0.25 g/L), TMP of 200 kPa and feed pH of 3. At high TMP and concentration, lignin rejection decreased due to enhancement of feed concentration on membrane surface. The mechanistic model exhibited that cake layer phenomena was dominant in both lignin and lignocellulosic solution. The proposed ANN model showed good correlation (R2-1.00) with experimental non-linear flux dynamic data of both lignin and synthetic lignocellulosic solution. In ANN analysis, activation function, algorithm and neuron effect have significant effect in design of accurate model for prediction of small flux datasets. Aerobically-treated palm oil mill filtration analysis also showed that cake layer phenomenon was dominant. A water recovery of 82 % was achieved even at low TMP under short durations.
    Matched MeSH terms: Water Purification*
  10. Al-Gheethi AA, Azhar QM, Senthil Kumar P, Yusuf AA, Al-Buriahi AK, Radin Mohamed RMS, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132080.
    PMID: 34509011 DOI: 10.1016/j.chemosphere.2021.132080
    Rhodamine B (RhB) is among the toxic dyes due to the carcinogenic, neurotoxic effects and ability to cause several diseases for humans. The adsorption with agricultural waste adsorbent recorded high performance for the RhB removal. The current review aimed to explore the efficiency of different adsorbents which have been used in the few last years for removing RhB dye from wastewater. The data of adsorption of RhB using agricultural wastes were collected from the Scopus database in the period between 2015 and 2021. The use of agricultural wastes and adsorbents as a replacement for the activated has received high attention among researchers. The RhB removal methods by microbial enzymes and biomass occurred between 76 and 90.1%. In comparison, the adsorption with agricultural wastes such as activated carbon white sugar reached 98% within 12 min. The adsorption process has a wide range of pH (3-10) due to the zwitterionic forms of RhB. Gmelina aborea leaf activated carbon is among the agriculture wastes absorbents that exhibited 1000 mg g-1 of the adsorption capacity. It appeared that the agricultural wastes adsorbents have a high potential for removing RhB from the wastewater.
    Matched MeSH terms: Water Purification*
  11. Detho A, Daud Z, Rosli MA, Awang H, Ridzuan MBB
    J Air Waste Manag Assoc, 2022 01;72(1):10-23.
    PMID: 33689589 DOI: 10.1080/10962247.2021.1895366
    The rapid generation rate of solid waste is due to the increasing population and industrialization. Nowadays, solid waste has been a major concerning problem in handling and disposal thus adsorption treatment process has been introduced which is an effective and low-cost method in removing organic and inorganic compounds from leachates such as chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N). A most commonly adsorbent used for the removal of organic and inorganic compounds is activated carbon (AC), yet the main disadvantage is being too expensive in cost. Many researchers tried to use low-cost adsorbent waste materials, such as peat soil, limestone etc. This review article reveals a list of low-cost adsorbent and their capacity of adsorption for the removal of COD and NH3-N. Furthermore, the preparation of these low-cost adsorbents as well as their removal efficiencies, relative cost, and limitation are discussed. The most efficient, cost-effective, and environment-friendly adsorbent can be used for the removal of COD and NH3-N thus can be provided for commercial usage or water treatment plant.Implications: The concentration of organic constituents (COD) and ammonia nitrogen in stabilized landfill leachate has significant strong influences of human health and environmental. This review article shows the list of low-cost adsorbent (i.e., Activated carbon, Peat soil, Zeolite, Limestone, and cockle shell and their capacity of adsorption for the removal of COD and ammonia nitrogen. This would be greatly applicable in future research era as well as conventionally minimizing high-cost materials use and thereby lowering the operating cost of leachate wastewater treatment.
    Matched MeSH terms: Water Purification*
  12. Ahmad A, Abdullah SRS, Hasan HA, Othman AR, Ismail N'
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2579-2587.
    PMID: 34374006 DOI: 10.1007/s11356-021-15541-7
    The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.
    Matched MeSH terms: Water Purification*
  13. Al-Raad AA, Hanafiah MM
    J Environ Manage, 2021 Dec 15;300:113696.
    PMID: 34509809 DOI: 10.1016/j.jenvman.2021.113696
    Electrocoagulation (ECoag) technique has shown considerable potential as an effective method in separating different types of pollutants (including inorganic pollutants) from various sources of water at a lower cost, and that is environmentally friendly. The EC method's performance depends on several significant parameters, including current density, reactor geometry, pH, operation time, the gap between electrodes, and agitation speed. There are some challenges related to the ECoag technique, for example, energy consumption, and electrode passivation as well as its implementation at a larger scale. This review highlights the recent studies published about ECoag capacity to remove inorganic pollutants (including salts), the emerging reactors, and the effect of reactor geometry designs. In addition, this paper highlights the integration of the ECoag technique with other advanced technologies such as microwave and ultrasonic to achieve higher removal efficiencies. This paper also presents a critical discussion of the major and minor reactions of the electrocoagulation technique with several significant operational parameters, emerging designs of the ECoag cell, operating conditions, and techno-economic analysis. Our review concluded that optimizing the operating parameters significantly enhanced the efficiency of the ECoag technique and reduced overall operating costs. Electrodes geometry has been recommended to minimize the passivation phenomenon, promote the conductivity of the cell, and reduce energy consumption. In this review, several challenges and gaps were identified, and insights for future development were discussed. We recommend that future studies investigate the effect of other emerging parameters like perforated and ball electrodes on the ECoag technique.
    Matched MeSH terms: Water Purification*
  14. Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M
    Chemosphere, 2021 Dec;284:131171.
    PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171
    Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
    Matched MeSH terms: Water Purification*
  15. Pillai P, Dharaskar S, Khalid M
    Chemosphere, 2021 Dec;284:131317.
    PMID: 34216929 DOI: 10.1016/j.chemosphere.2021.131317
    The current novel work presents the optimization of factors affecting defluoridation by Al doped ZnO nanoparticles using response surface methodology (RSM). Al doped ZnO nanoparticles were synthesized by the sol-gel method and validated by FTIR, XRD, TEM/EDS, TGA, BET, and particle size analysis. Moreover, a central composite design (CCD) was developed for the experimental study to know the interaction between Al doped ZnO adsorbent dosage, initial concentration of fluoride, and contact time on fluoride removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was achieved to discover the importance of the individual and the effect of variables on the response. The model predicted that the response significantly correlated with the experimental response (R2 = 0.97). Among the factors, the effect of adsorbent dose and contact time was considered to have more influence on the response than the concentration. The optimized process parameters by RSM presented the adsorbent dosage: 0.005 g, initial concentration of fluoride: 1.5 g/L, and contact time: 5 min, respectively. Kinetic, isotherm, and thermodynamic studies were also investigated. The co-existing ions were also studied. These results demonstrated that Al doped ZnO could be a promising adsorbent for effective defluoridation for water.
    Matched MeSH terms: Water Purification*
  16. Al-Sahari M, Al-Gheethi A, Radin Mohamed RMS, Noman E, Naushad M, Rizuan MB, et al.
    Chemosphere, 2021 Dec;285:131373.
    PMID: 34265718 DOI: 10.1016/j.chemosphere.2021.131373
    Millions of litters of multifarious wastewater are directly disposed into the environment annually to reduce the processing costs leading to eutrophication and destroying the clean water sources. The bioelectrochemical systems (BESs) have recently received significant attention from researchers due to their ability to convert waste into energy and their high efficiency of wastewater treatment. However, most of the performed researches of the BESs have focused on energy generation, which created a literature gap on the utilization of BESs for wastewater treatment. The review highlights this gap from various aspects, including the BESs trends, fundamentals, applications, and mechanisms. A different review approach has followed in the present work using a bibliometric review (BR) which defined the literature gap of BESs publications in the degradation process section and linked the systematic review (SR) with it to prove and review the finding systematically. The degradation mechanisms of the BESs have been illustrated comprehensively in the current work, and various suggestions have been provided for supporting future studies and cooperation.
    Matched MeSH terms: Water Purification*
  17. Sadiq AC, Olasupo A, Ngah WSW, Rahim NY, Suah FBM
    Int J Biol Macromol, 2021 Nov 30;191:1151-1163.
    PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179
    The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
    Matched MeSH terms: Water Purification/methods*
  18. Chin JY, Teoh GH, Ahmad AL, Low SC
    Sci Total Environ, 2021 Nov 10;794:148657.
    PMID: 34198076 DOI: 10.1016/j.scitotenv.2021.148657
    Surging growth of aquaculture industry has alarmed the public when the wastewater discharged had an adverse effect on the environment. This current study is a pioneer in the use of membrane distillation (MD) to treat real aquaculture wastewater. In addition to excellent hydrophobicity, the slippery surface of membrane used for MD is another key factor that enhances the performance of MD. The slippery surface of the membrane was tuned by layering high-viscosity and low-viscosity polypropylene (PP) polymers on the electrospun membrane by solvent-exchanged method. While the high-viscosity PP coating (PP/HV) rendered the membrane surface slippery, the low-viscosity PP coating (PP/LV) caused the fish farm wastewater to have stick-slip movement on the membrane surface. In the long-term 70-hour direct contact membrane distillation (DCMD) separation, PP/HV and PP/LV membranes can perfectly eliminate the undesirable components in the fish farm wastewater. The PP/HV membrane has registered a flux of 19.1 kg/m2·h, while the flux of PP/LV membrane was only 7.3 kg/m2·h. The PP/HV membrane also showed excellent anti-scaling properties in relative to the PP/LV membrane. This is because the PP/HV membrane promotes effortless gliding of the feed water along the surface of the membrane, while the surface of the PP/LV membrane has a static water boundary. Therefore, it can be concluded that the application of MD using the membrane coated with high-viscosity PP polymer is a feasible technology for the treatment of aquaculture wastewater.
    Matched MeSH terms: Water Purification*
  19. Pandey AK, Reji Kumar R, B K, Laghari IA, Samykano M, Kothari R, et al.
    J Environ Manage, 2021 Nov 01;297:113300.
    PMID: 34293672 DOI: 10.1016/j.jenvman.2021.113300
    This article offers a trend of inventions and implementations of photocatalysis process, desalination technologies and solar disinfection techniques adapted particularly for treatment of industrial and domestic wastewater. Photocatalysis treatment of wastewater using solar energy is a promising renewable solution to reduce stresses on global water crisis. Rendering to the United Nation Environment Programme, 1/3 of world population live in water-stressed countries, while by 2025 about 2/3 of world population will face water scarcity. Major pollutants exhibited from numerous sources are critically discussed with focus on potential environmental impacts & hazards. Treatment of wastewater by photocatalysis technique, solar thermal electrochemical process, solar desalination of brackish water and solar advanced oxidation process have been presented and systematically analysed with challenges. Both heterogenous and homogenous photocatalysis techniques employed for wastewater treatment are critically reviewed. For treating domestic wastewater, solar desalination technologies adopted for purifying brackish water into potable water is presented along with key challenges and remedies. Advanced oxidation process using solar energy for degradation of organic pollutant is an important technique to be reviewed due to their effectiveness in wastewater treatment process. Present article focused on three key issues i.e. major pollutants, wastewater treatment techniques and environmental benefits of using solar power for removal of pollutants. The review also provides close ideas on further research needs and major concerns. Drawbacks associated with conventional wastewater treatment options and direct solar energy-based wastewater treatment with energy storage systems to make it convenient during day and night both listed. Although, energy storage systems increase the overall cost of the wastewater treatment plant it also increases the overall efficiency of the system on environmental cost. Cost-efficient wastewater treatment methods using solar power would significantly ensure effective water source utilization, thereby contributing towards sustainable development goals.
    Matched MeSH terms: Water Purification*
  20. Zhang C, Hasunuma T, Shiung Lam S, Kondo A, Ho SH
    Bioresour Technol, 2021 Nov;340:125638.
    PMID: 34358989 DOI: 10.1016/j.biortech.2021.125638
    Mariculture wastewater has drawn growing attention due to associated threats for coastal environment. However, most biological techniques exhibit unfavorable performance due to saline inhibition. Furthermore, only NaCl was used in most studies causing clumsy evaluation, undermining the potential of microalgal mariculture wastewater treatment. Herein, various concentrations of NaCl and sea salt are comprehensively examined and compared for their efficiencies of mariculture wastewater treatment and biodiesel conversion. The results indicate sea salt is a better trigger for treating wastewater (nearly 100% total nitrogen and total phosphorus removal) and producing high-quality biodiesel (330 mg/L•d). Structure equation model (SEM) further demonstrates the correlation of wastewater treatment performance and microalgal status is gradually weakened with increment of sea salt concentrations. Furthermore, metabolic analysis reveals enhanced photosynthesis might be the pivotal motivator for preferable outcomes under sea salt stimulation. This study provides new insights into microalgae-based approach integrating mariculture wastewater treatment and biodiesel production.
    Matched MeSH terms: Water Purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links