Displaying publications 21 - 35 of 35 in total

Abstract:
Sort:
  1. Kumar CS, Kwong HC, Mah SH, Chia TS, Loh WS, Quah CK, et al.
    Molecules, 2015;20(10):18827-46.
    PMID: 26501248 DOI: 10.3390/molecules201018827
    Adamantyl-based compounds are commercially important in the treatments for neurological conditions and type-2 diabetes, aside from their anti-viral abilities. Their values in drug design are chronicled as multi-dimensional. In the present study, a series of 2-(adamantan-1-yl)-2-oxoethyl benzoates, 2(a-q), and 2-(adamantan-1-yl)-2-oxoethyl 2-pyridinecarboxylate, 2r, were synthesized by reacting 1-adamantyl bromomethyl ketone with various carboxylic acids using potassium carbonate in dimethylformamide medium at room temperature. Three-dimensional structures studied using X-ray diffraction suggest that the adamantyl moiety can serve as an efficient building block to synthesize 2-oxopropyl benzoate derivatives with synclinal conformation with a looser-packed crystal packing system. Compounds 2a, 2b, 2f, 2g, 2i, 2j, 2m, 2n, 2o, 2q and 2r exhibit strong antioxidant activities in the hydrogen peroxide radical scavenging test. Furthermore, three compounds, 2p, 2q and 2r, show good anti-inflammatory activities in the evaluation of albumin denaturation.
    Matched MeSH terms: Carboxylic Acids
  2. Hasanpourghadi M, Karthikeyan C, Pandurangan AK, Looi CY, Trivedi P, Kobayashi K, et al.
    J Exp Clin Cancer Res, 2016;35(1):58.
    PMID: 27030360 DOI: 10.1186/s13046-016-0332-0
    Microtubule Targeting Agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are widely used in the treatment of various cancers. As with most chemotherapeutic agents, adverse effects and drug resistance are commonly associated with the clinical use of these agents. Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC), a benzimidazole derivative displays greater toxicity against various cancer compared to normal human cell lines. The present study, focused on the cytotoxic effects of MBIC against HeLa cervical cancer cells and possible actions on the microtubule assembly.
    Matched MeSH terms: Carboxylic Acids
  3. Muhammad Nur Amir Azman, Yusilawati Ahmad Nor, Nur Husna Samsudin, Ma’an Fahmi Rashid Alkhatib, Yeow, Tshai Kim
    MyJurnal
    Carbon nanoparticles have been widely used in various applications. However, they are commonly known to have low dispersibility and chemical inertness which limit their practical ability in medical or biological area. Some studies have been performed to modify carbon nanoparticles such as carbon nanotubes using ultraviolet (UV)-Ozone system. However, little is known on the effects of such system towards other types of carbon nanoparticles such as mesoporous hollow carbon nanoparticles (MHCNs). Thus, in this study, improvement of MHCNs physiochemical properties have been studied using UV-Ozone treatment for the first time. The treatment was conducted in water as dispersant agent at ozone flowrate of 1.0 L/min and exposure time of 45 min. SEM images observed that MHCNs morphology and surface structure remain intact after the treatment. Observations on the dispersibility of MHCNs in phosphate buffered saline (PBS) solution shows that the dispersibility was improved compared to the untreated ones. This was supported by the low Z-average and PDI values of treated MHCNs obtained at ~400 nm and 0.2, respectively when compared to the untreated MHCNs which was obtained at 970 nm and 0.417, respectively. Thermogravimetric analysis (TGA) showed an increased in weight loss of treated MHCNs at the lower temperature compared to untreated MHCNs. Results from Fourier Transform Infrared (FTIR) showed an increase number of new functional groups that includes carboxylic acid group presence at the surface of treated MHCNs which contributes to the improvement of their dispersibility, thermal properties and chemical functionality. These findings opened a new possibility of using UV-Ozone treatment to improve physicochemical properties of MHCNs for medical area such as in drug delivery application in addition to their excellent storage and carrier system.
    Matched MeSH terms: Carboxylic Acids
  4. Laily B. Din, Zuriati Zakaria, Mohd Wahid Samsudin, Elix JA
    The lichen collection from Bukit Larut, Taiping, Malaysia in 1999 included Bulbothrix isidiza, Chrysothrix xanthina, Cladonia adspersa, C. verticillata, Coccocarpia palmicola, Heterodermia flabellata, H. japonica, H. obscurata, Hypotrachyna imbricatula, Leptogium azureum, Parmelinella wallichiana, Parmotrema tinctorum, P. clavuliferum, P. reticulatum, Pertusaria sp., Physma byrsaeum, Usnea baileyi and Usnea rubrotincta. Secondary metabolites could not be detected in three lichens, Coccocarpia palmicola, Leptogium azureum and Physma byrsaeum by HPLC and TLC analysis. The other 15 lichen species showed the presence of ten classes of compounds, depsides (10 compounds), depsidones (16), quinones (5), xanthones (2), naphthopyrones (1), pulvinic acid derivatives (1), diphenylethers (1), dibenzofurans (1), aliphatic acids (4) and terpenoids (3).
    Matched MeSH terms: Carboxylic Acids
  5. Ishak MAI, Jumbri K, Daud S, Abdul Rahman MB, Abdul Wahab R, Yamagishi H, et al.
    J Hazard Mater, 2020 11 15;399:123008.
    PMID: 32502857 DOI: 10.1016/j.jhazmat.2020.123008
    The compatibility and performance of an Isoreticular Metal-Organic Frameworks (IRMOF-1) impregnated with choline-based ionic liquids (ILs) for selective adsorption of H2S/CO2, were studied by molecular dynamics (MD) simulation. Cholinium alanate ([Chl][Ala]) was nominated as the suitable IL for impregnation into IRMOF-1, consistent with the low RMSD values (0.546 nm, 0.670 nm, 0.776 nm) at three IL/IRMOF-1 w/w ratios (WIL/IRMOF-1 = 0.4, 0.8, and 1.2). The [Chl]+ and [Ala]- ion pair was located preferentially around the carboxylate group within the IRMOF-1 framework, with the latter interacting strongly with the host than the [Chl]+. Results of radius of gyration (Rg) and root mean square displacement (RMSD) revealed that a ratio of 0.4 w/w of IL/IRMOF-1 (Rg = 1.405 nm; RMSD = 0.546 nm) gave the best conformation to afford an exceptionally stable IL/IRMOF-1 composite. It was discovered that the IL/IRMOF-1 composite was more effective in capturing H2S and CO2 compared to pristine IRMOF-1. The gases adsorbed in higher quantities in the IL/IRMOF-1 composite phase compared to the bulk phase, with a preferential adsorption for H2S, as shown by the uppermost values of adsorption ( [Formula: see text] = 17.954 mol L-1 bar-1) and an adsorption selectivity ( [Formula: see text] = 43.159) at 35 IL loading.
    Matched MeSH terms: Carboxylic Acids
  6. Haq F, Farid A, Ullah N, Kiran M, Khan RU, Aziz T, et al.
    Environ Res, 2022 Dec;215(Pt 1):114241.
    PMID: 36100100 DOI: 10.1016/j.envres.2022.114241
    This study is based on the removal of methylene blue (MB) from aqueous solution by cost effective and biodegradable adsorbent carboxymethyl starch grafted polyvinyl pyrolidone (Car-St-g-PVP). The Car-St-g-PVP was synthesized by grafting vinyl pyrolidone onto carboxymethyl starch by free radical polymerization reaction. The structure and different properties of Car-St-g-PVP were determined by 1H NMR, FT-IR, XRD, TGA and SEM. A series of batch experiments were conducted for the removal of MB, The adsorption affecting factors such as temperature, contact time, initial concentration of MB dye, dose of Car-St-g-PVP and pH were studied in detail. The other parameters like the thermodynamic study, kinetics and isothermal models were fitted to the experimental data. The results showed that pseudo 2nd order kinetics and Langmuir's adsorption isotherms were best fitted to experimental data with regression coefficient R2 viz. 0.99 and 0.97. The kinetic study showed that the adsorption mechanism favored chemisorption. The Gibbs free energy (ΔG°) for the adsorption process was found to be -7.31 kJ/mol, -8.23 kJ/mol, -9.00 kJ/mol and -10.10 kJ/mol at 25 °C, 35 °C, 45 °C and 55 °C respectively. The negative values of ΔG° suggested the spontaneous nature of the adsorption process. Similarly, the positive values of entropy (ΔS°) and enthalpy (ΔH°) 91.27 J/k.mol and 19.90 kJ/mol showed the increasing randomness and endothermic nature of the adsorption process. The value of separation factor (RL) was found to be less than one (RL 
    Matched MeSH terms: Carboxylic Acids
  7. Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH
    Talanta, 2014 Nov;129:505-15.
    PMID: 25127626 DOI: 10.1016/j.talanta.2014.06.019
    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis.
    Matched MeSH terms: Carboxylic Acids/chemistry
  8. Hasanpourghadi M, Majid NA, Mustafa MR
    Biochem Pharmacol, 2018 06;152:174-186.
    PMID: 29608909 DOI: 10.1016/j.bcp.2018.03.030
    We recently reported that methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) is a microtubule targeting agent (MTA) with multiple mechanisms of action including apoptosis in two human breast cancer cell-lines MCF-7 and MDA-MB-231. In the present study, investigation of early molecular events following MBIC treatment demonstrated the induction of autophagy. This early (<24 h) response to MBIC was characterized by accumulation of autophagy markers; LC3-II, Beclin1, autophagic proteins (ATGs) and collection of autophagosomes but with different variations in the two cell-lines. MBIC-induced autophagy was associated with generation of reactive oxygen species (ROS). In parallel, an increased activation of SAPK/JNK pathway was detected, as an intersection of ROS production and induction of autophagy. The cytotoxic effect of MBIC was enhanced by inhibition of autophagy through blockage of SAPK/JNK signaling, suggesting that MBIC-induced autophagy, is a possible cellular self-defense mechanism against toxicity of this agent in both breast cancer cell-lines. The present findings suggest that inhibition of autophagy eliminates the cytoprotective activity of MDA-MB-231 and MCF-7 cells, and sensitizes both the aggressive and non-aggressive human breast cancer cell-lines to the cytotoxic effects of MBIC.
    Matched MeSH terms: Carboxylic Acids/pharmacology*
  9. Lee WH, Loo CY, Rohanizadeh R
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:929-939.
    PMID: 30889767 DOI: 10.1016/j.msec.2019.02.030
    This study has evaluated the effect of functionalizing surface charges of hydroxyapatite on the modulation of loading and release of curcumin nanoparticles. The increase in loading and release of curcumin nanoparticles indirectly translates to enhanced anti-cancer effect. Owing to the hydrophobic characteristics of curcumin which have resulted in low bioavailability in cancer cells, the engineering curcumin into nanoparticles is therefore a viable solution to overcomes its limitation. In order to maintain a sustained release profile of curcumin nanoparticles, curcumin nanoparticles were loaded (Cur-NPs) onto hydroxyapatite (HA) via physical adsorption. To regulate the adsorption capacity of Cur-NPs onto HA, we functionalized HA with different carboxylic acids (lactic acid, tartaric acid and citric acid). The presence of carboxylic groups on HA significantly affected the binding and the release profile of Cur-NPs. The effects of Cur-NPs loaded HA were evaluated on breast cancer cell line (MCF-7), which included cell proliferation, cellular uptake of Cur-NPs, apoptosis and cell cycle analysis. The results showed that carboxylic acid-functionalized HA demonstrated higher anti-proliferating activity and time dependent cytoplasmic uptake of Cur-NPs in MCF-7 cells compared to unmodified HA. In addition, Cur-NPs loaded on functionalized HA induced higher apoptosis and cell cycle arrest in MCF-7 cells compared to unmodified HA. The present study indicates that the delivery of Cur-NPs to breast cancer using carboxylic acid-functionalized HA carrier could improve their anti-cancer activities.
    Matched MeSH terms: Carboxylic Acids/chemistry*
  10. Saeedfar K, Heng LY, Chiang CP
    Bioelectrochemistry, 2017 Dec;118:106-113.
    PMID: 28780443 DOI: 10.1016/j.bioelechem.2017.07.012
    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish.
    Matched MeSH terms: Carboxylic Acids/chemistry
  11. Mashitah, Zulfadhly Z, Bhatia S
    PMID: 10595446
    Non-living biomass of Pycnoporus sanguineus has an ability to take up lead,copper and cadmium ions from an aqueous solution. The role played by various functional groups in the cell wall and the mechanism uptake of lead, copper and cadmium by Pycnoporus sanguineus were investigated. Modification of the functional groups such as lipids, carboxylic and amino was done through chemical pretreatment in order to study their role in biosorption of metal ions. Results showed that the chemical modification of these functional groups has modified the ability of biomass to remove lead, copper and cadmium ions from the solution. Scanning electron microscopy was also used to study the morphological structure of the biomass before and after adsorption. The electron micrograph indicated that the structure of biomass changed due to the adsorption of the metals onto the cell walls. Furthermore, the X-ray energy dispersion analysis (EDAX) showed that the calcium ion present in the cell wall of biomass was released and replaced by lead ions. This implied that an ion exchange is one of the principal mechanisms for metal biosorption.
    Matched MeSH terms: Carboxylic Acids
  12. Oh, J. H., Lim, P. K., Hamzah, S., Tan, C. P., Chan, Sook Wah
    MyJurnal
    Introduction: Diabetes mellitus (DM) is one of the top diseases that lead public health concern in Malaysia. It was believed to rise in number up to 4.5 million on cases by year 2020 based on the current figure. Momordica charantia Linn (MC), a climber belonging to family Cucurbitaceae, is well known in treating diabetic-related conditions. In earlier studies related to the hypoglycemic properties of MC mainly utilized the crude extract, which contain a mixture of bioactives (charantins, insulin-like peptides and alkaloids). Till now, there is no conclusive result on the major bioactives that play role in the hypoglycemic effect of MC and research regarding the charantin purification was not well established. Hence, the objectives of this study were to purify the charantin from MC and to characterize the purified charantin before further subjected to in vivo hypoglycemic study. Methods: The crude was first extracted from MC using ethanol as solvent via Soxhlet extraction following by a series of purification steps via washing, centrifugation, and C-18 cartridges. Results: The HPLC analysis showed that the charantin of purified extract after passing out from the cartridge exuded at 12.50 min with a concentration of 500 ppm, which is relatively 20 times higher than the crude extract (25 ppm). The structural properties of purified charantin were studied using FTIR and it showed strong peaks of carboxylic acids (2884 nm), alcohols (1023 nm) and diethyl ether (1114 nm) as compared
    with the standard. The compound was reconfirmed in LC-MS analysis. The result displayed mass spectrum in positive mode indicates the presence of similar compound in the purified extract and standard charantin, as presented by ion m/z = 300. Conclusion: The charantin was successfully purified from MC and can act as a potent plant-based hypoglycemic agent for diabetes.
    Matched MeSH terms: Carboxylic Acids
  13. Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR
    Oncotarget, 2017 Apr 25;8(17):28840-28853.
    PMID: 28392503 DOI: 10.18632/oncotarget.16263
    Microtubule Targeting Agents (MTAs) induce cell death through mitotic arrest, preferentially affecting rapidly dividing cancer cells over slowly proliferating normal cells. Previously, we showed that Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) acts as a potential MTA. In this study, we demonstrated that MBIC exhibits greater toxicity towards non-aggressive breast cancer cell-line, MCF-7 (IC50 = 0.73 ± 0.0 μM) compared to normal fibroblast cell-line, L-cells (IC50 = 59.6 ± 2.5 μM). The IC50 of MBIC against the aggressive breast cancer cell-line, MDA-MB-231 was 20.4 ± 0.2 μM. We hypothesized that the relatively high resistance of MDA-MB-231 cells to MBIC is associated with p53 mutation. We investigated p53 and three of its downstream proteins: survivin, cyclin dependent kinase (Cdk1) and cyclin B1. Following treatment with MBIC, survivin co-immunoprecipitated with caspases with higher affinity in MDA-MB-231 compared to MCF-7 cells. Furthermore, silencing survivin caused a 4.5-fold increase in sensitivity of MDA-MB-231 cells to MBIC (IC50 = 4.4 ± 0.3). In addition, 4 weeks of MBIC administration in MDA-MB-231 cells inoculated BALB/c nude mice resulted in 79.7% reduction of tumor volume compared to the untreated group with no severe sign of toxicity. Our results demonstrated MBIC has multiple anti-tumor actions and could be a potential drug in breast cancer therapy.
    Matched MeSH terms: Carboxylic Acids/pharmacology; Carboxylic Acids/therapeutic use*; Carboxylic Acids/chemistry
  14. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY
    Anaerobe, 2014 Aug;28:29-36.
    PMID: 24818631 DOI: 10.1016/j.anaerobe.2014.04.012
    Lactobacillus acidophilus is categorized as a probiotic strain because of its beneficial effects in human health and prevention of disease transmission. This study is aimed to characterize the probiotic potential of L. acidophilus 36YL originally isolated from the vagina of healthy and fertile Iranian women. The L. acidophilus 36YL strain was identified using 16S rDNA gene sequencing and characterized by biochemical methodologies, such as antibiotics susceptibility, antimicrobial activity, and acid and bile resistance. The bioactivity of the secretion of this strain on four human cancer cell lines (AGS, HeLa, MCF-7, and HT-29) and one normal cell line (HUVEC) was evaluated by cytotoxicity assay and apoptosis analysis. This newly isolated strain was found to exhibit notable probiotic properties, such as admirable antibiotic susceptibility, good antimicrobial activity, and favorable resistance to acid and bile salt. The results of bioactivity assessment demonstrated acceptable anticancer effects on the four tested cancer cell lines and negligible side effects on the assayed normal cell line. Our findings revealed that the anticancer effect of L. acidophilus 36YL strain secretions depends on the induction of apoptosis in cancer cells. L. acidophilus 36YL strain is considered as a nutraceutical alternative or a topical medication with a potential therapeutic index because of the absence of cytotoxicity to normal cells, but effective toxicity to cancer cell lines.
    Matched MeSH terms: Carboxylic Acids/metabolism
  15. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO
    Toxicol Appl Pharmacol, 2017 08 15;329:347-357.
    PMID: 28673683 DOI: 10.1016/j.taap.2017.06.024
    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.
    Matched MeSH terms: Carboxylic Acids/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links