Displaying publications 21 - 40 of 890 in total

Abstract:
Sort:
  1. Abualqumboz MS, Malakahmad A, Mohammed NI
    J Air Waste Manag Assoc, 2016 06;66(6):597-608.
    PMID: 27249105 DOI: 10.1080/10962247.2016.1154115
    Landfills throughout the world are contributing to the global warming problem. This is due to the existence of the most important greenhouse gases (GHG) in landfill gas (LFG); namely, methane (CH4) and carbon dioxide (CO2). The aim of this paper is quantifying the total potential emissions, as well as the variation in production with time of CH4 from a proposed landfill (El Fukhary landfill) in the Gaza Strip, Palestine. Two different methods were adopted in order to quantify the total potential CH4 emissions; the Default methodology based on the intergovernmental panel on climate change (IPCC) 1996 revised guidelines and the Landfill Gas Emissions model (LandGEM V3.02) provided by the United States Environmental Protection Agency (EPA). The second objective of the study has been accomplished using the Triangle gas production model. The results obtained from both Default and LandGEM methods were found to be nearly the same. For 25 years of disposing MSW, El Fukhary landfill expected to have potential CH4 emissions of 1.9542 ± 0.0037 ×109 m3. Triangle model showed that the peak production in term of CH4 would occur in 2043; 28 years beyond the open year. Moreover, the model shows that 50 % of the gas will be produced approximately at the middle of the total duration of gas production. Proper control of Methane emissions from El Fukhary landfill is highly suggested in order to reduce the harmful effects on the environment.

    IMPLICATIONS: Although, GHG emissions are extensively discussed in the developed countries throughout the world, it has gained little concern in the developing countries because they are forced most of the time to put environmental concerns at the end of their priority list. The paper shows that developing countries have to start recognizing their fault and change their way of dealing with environmental issues especially GHG emissions (mainly Methane and carbon dioxide). The authors estimated the potential methane emissions from a proposed central landfill that has been approved to be built in Palestine, a country that is classified as a developing country.

    Matched MeSH terms: Environmental Monitoring/methods*
  2. Abubakar A, Zangina AS, Maigari AI, Badamasi MM, Ishak MY, Abdullahi AS, et al.
    Environ Sci Pollut Res Int, 2022 Aug;29(40):61065-61079.
    PMID: 35435558 DOI: 10.1007/s11356-022-19974-6
    Improper treatment during recycling of e-waste materials by means of open burning is on the rise which has led to an increase in air pollution. This study looked at heavy metal concentrations, concentrations in relation to threshold values, and assessments of risk for noncarcinogenic and cancer risk threat. The Microwave Plasma-Atomic Emission Spectrometry (MP-AES 4210) series instrument of Agilent Technology, United States of America (USA), was used in analyzing heavy metal (Cd, Cu, and Pb) concentrations. The result of the analysis of the Kuka Bulukiya treatment point revealed that Pb has the highest mean concentration of 0.0693 ppm, Cu 0.0525 parts per million (PPM), and Cd 0.0042 ppm. The mean concentration at PRP Gidan Ruwa for Cd was found to be 0.0059 ppm, Cu 0.0363 ppm, and Pb 0.049 ppm. The result of the adult and children population calculated shows that the hazard quotient (HQ) and hazard index (HI) values are not up to 1 in all the pathways (inhalation, ingestion, and dermal) at both treatment points (1.2 ˟ 10-4 and 9.8 ˟ 10-5) and (6.4 ˟ 10-4 and 5.9 ˟ 10-4), respectively. The cancer risk for Kuka Bulukiya 6 ˟ 10-10 and PRP G/Ruwa 5 ˟ 10-10 for adults and 7 ˟ 10-10 and 4 ˟ 10-10 for children were both lower than the threshold set for cancer risk by the United States Environmental Protection Agency (USEPA). This meant that both adults and children were not at risk of cancer and noncarcinogenic threat based on the assessment in this study. The study concluded that informal e-waste burning has substantially helped in the relatively high levels of air pollution identified in the treatment points and in turn posed environmental and public health concerns to people around the area. This study recommends that samples of the vegetable products at the PRP G/Ruwa treatment point should be investigated immediately and adequate restrictions and regulations should be enacted and enforced in order to safeguard the environment and the populace. There is need for caution from the authorities to avert the possible implications (e-waste extractors and the public) of being affected with noncarcinogenic or carcinogenic ailments over time.
    Matched MeSH terms: Environmental Monitoring/methods
  3. Aburas MM, Ho YM, Ramli MF, Ash'aari ZH
    Environ Monit Assess, 2018 Feb 20;190(3):156.
    PMID: 29464400 DOI: 10.1007/s10661-018-6522-9
    The identification of spatio-temporal patterns of the urban growth phenomenon has become one of the most significant challenges in monitoring and assessing current and future trends of the urban growth issue. Therefore, spatio-temporal and quantitative techniques should be used hand in hand for a deeper understanding of various aspects of urban growth. The main purpose of this study is to monitor and assess the significant patterns of urban growth in Seremban using a spatio-temporal built-up area analysis. The concentric circles approach was used to measure the compactness and dispersion of built-up area by employing Shannon's Entropy method. The spatial directions approach was also utilised to measure the sustainability and speed of development, while the gradient approach was used to measure urban dynamics by employing landscape matrices. The overall results confirm that urban growth in Seremban is dispersed, unbalanced and unsustainable with a rapid speed of regional development. The main contribution of using existing methods with other methods is to provide several spatial and statistical dimensions that can help researchers, decision makers and local authorities understand the trend of growth and its patterns in order to take the appropriate decisions for future urban planning. For example, Shannon's Entropy findings indicate a high value of dispersion between the years 1990 and 2000 and from 2010 to 2016 with a growth rate of approximately 94 and 14%, respectively. Therefore, these results can help and support decision makers to implement alternative urban forms such as the compactness form to achieve an urban form that is more suitable and sustainable. The results of this study confirm the importance of using spatio-temporal built-up area and quantitative analysis to protect the sustainability of land use, as well as to improve the urban planning system via the effective monitoring and assessment of urban growth trends and patterns.
    Matched MeSH terms: Environmental Monitoring/methods
  4. Abushammala MF, Basri NE, Elfithri R
    Environ Monit Assess, 2013 Dec;185(12):9967-78.
    PMID: 23797636
    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.
    Matched MeSH terms: Environmental Monitoring
  5. Abushammala MF, Basri NE, Basri H, Kadhum AA, El-Shafie AH
    Environ Monit Assess, 2013 Jun;185(6):4919-32.
    PMID: 23054277 DOI: 10.1007/s10661-012-2913-5
    Methane (CH₄) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO₂), risking human health and the environment. Microbial CH₄ oxidation in landfill cover soils may constitute a means of controlling CH₄ emissions. The study was intended to quantify CH₄ and CO₂ emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH₄ oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH₄ to CO₂ emissions was 25.4 %, indicating higher CO₂ emissions than CH₄ emissions. Also, the average CH₄ oxidation in the landfill cover soil was 52.5 %. The CH₄ and CO₂ emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH₄ emissions and oxidation (R(2) = 0.46). It can be concluded that the variation in the CH₄ oxidation was mainly attributed to the properties of the landfill cover soil.
    Matched MeSH terms: Environmental Monitoring
  6. Adcock KE, Ashfold MJ, Chou CC, Gooch LJ, Mohd Hanif N, Laube JC, et al.
    Environ Sci Technol, 2020 Apr 07;54(7):3814-3822.
    PMID: 32126759 DOI: 10.1021/acs.est.9b06433
    Recent findings of an unexpected slowdown in the decline of CFC-11 mixing ratios in the atmosphere have led to the conclusion that global CFC-11 emissions have increased over the past decade and have been attributed in part to eastern China. This study independently assesses these findings by evaluating enhancements of CFC-11 mixing ratios in air samples collected in Taiwan between 2014 and 2018. Using the NAME (Numerical Atmospheric Modeling Environment) particle dispersion model, we find the likely source of the enhanced CFC-11 observed in Taiwan to be East China. Other halogenated trace gases were also measured, and there were positive interspecies correlations between CFC-11 and CHCl3, CCl4, HCFC-141b, HCFC-142b, CH2Cl2, and HCFC-22, indicating co-location of the emissions of these compounds. These correlations in combination with published emission estimates of CH2Cl2 and HCFC-22 from China, and of CHCl3 and CCl4 from eastern China, are used to estimate CFC-11 emissions. Within the uncertainties, these estimates do not differ for eastern China and the whole of China, so we combine them to derive a mean estimate that we term as being from "(eastern) China". For 2014-2018, we estimate an emission of 19 ± 5 Gg year-1 (gigagrams per year) of CFC-11 from (eastern) China, approximately one-quarter of global emissions. Comparing this to previously reported CFC-11 emissions estimated for earlier years, we estimate CFC-11 emissions from (eastern) China to have increased by 7 ± 5 Gg year-1 from the 2008-2011 average to the 2014-2018 average, which is 50 ± 40% of the estimated increase in global CFC-11 emissions and is consistent with the emission increases attributed to this region in an earlier study.
    Matched MeSH terms: Environmental Monitoring
  7. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

    Matched MeSH terms: Environmental Monitoring/methods*
  8. Adiana G, Shazili NA, Marinah MA, Bidai J
    Environ Monit Assess, 2014 Jan;186(1):421-31.
    PMID: 23974537 DOI: 10.1007/s10661-013-3387-9
    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.
    Matched MeSH terms: Environmental Monitoring*
  9. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Environmental Monitoring/methods
  10. Affandi FA, Ishak MY
    Environ Sci Pollut Res Int, 2019 Jun;26(17):16939-16951.
    PMID: 31028621 DOI: 10.1007/s11356-019-05137-7
    Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
    Matched MeSH terms: Environmental Monitoring/methods*
  11. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Environmental Monitoring
  12. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
    Matched MeSH terms: Environmental Monitoring
  13. Agamuthu P, Mehran SB, Norkhairah A, Norkhairiyah A
    Waste Manag Res, 2019 Oct;37(10):987-1002.
    PMID: 31084415 DOI: 10.1177/0734242X19845041
    Marine debris, defined as any persistent manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment, has been highlighted as a contaminant of global environmental and economic concern. The five main categories of marine debris comprise of plastic, paper, metal, textile, glass and rubber. Plastics is recognised as the major constituent of marine debris, representing between 50% and 90% of the total marine debris found globally. Between 4.8 and 12.7 million metric tonnes of consumer plastics end up in the world oceans annually, resulting in the presence of more than 100 million particles of macroplastics in only 12 regional seas worldwide, and with 51 trillion particles of microplastic floating on the ocean surface globally. The impacts of marine debris can be branched out into three categories; injury to or death of marine organisms, harm to marine environment and effects on human health and economy. Marine mammals often accidentally ingest marine debris because of its appearance that can easily be mistaken as food. Moreover, floating plastics may act as vehicles for chemicals and/or environmental contaminants, which may be absorbed on to their surface during their use and permanence into the environment. Additionally, floating plastics is a potential vector for the introduction of invasive species that get attached to it, into the marine environment. In addition, human beings are not excluded from the impact of marine debris as they become exposed to microplastics through seafood consumption. Moreover, landscape degradation owing to debris accumulation is an eyesore and aesthetically unpleasant, thus resulting in decreased tourism and subsequent income loss. There are a wide range of initiatives that have been taken to tackle the issue of marine debris. They may involve manual removal of marine debris from coastal and aquatic environment in form of programmes and projects organised, such as beach clean-ups by scientific communities, non-governmental organizations and the removal of marine litter from Europe's four regional seas, respectively. Other initiatives focus on assessment, reduction, prevention and management of marine debris under the umbrella of international (the United Nations Environment Programme/Mediterranean Action Plan, the Oslo/Paris Convention) and regional organisations - that is, the Helsinki Commission. There are also a number of international conventions and national regulations that encourage mitigation and management of marine debris. However, it is argued that these initiatives are short-term unsustainable solutions and the long-term sustainable solution would be adoption of circular economy. Similarly, four of the sustainable developmental goals have targets that promote mitigation of marine debris by efficient waste management and practice of 3R. As evident by the Ad Hoc Expert Group on Marine Litter and Microplastics meeting, tackling the marine debris crisis is not a straightforward, one-size-fits-all solution, but rather an integrated and continuous effort required at local, regional and global level.
    Matched MeSH terms: Environmental Monitoring
  14. Aggelis DG, Alver N, Chai HK
    ScientificWorldJournal, 2014;2014:435238.
    PMID: 24701167 DOI: 10.1155/2014/435238
    Matched MeSH terms: Environmental Monitoring/methods; Environmental Monitoring/standards*
  15. Agusa T, Kunito T, Yasunaga G, Iwata H, Subramanian A, Ismail A, et al.
    Mar Pollut Bull, 2005;51(8-12):896-911.
    PMID: 16023148
    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.
    Matched MeSH terms: Environmental Monitoring/statistics & numerical data*
  16. Ahmad A, Kurniawan SB, Abdullah SRS, Othman AR, Hasan HA
    Chemosphere, 2022 Mar;290:133319.
    PMID: 34922971 DOI: 10.1016/j.chemosphere.2021.133319
    The contamination of aquaculture products and effluents by contaminants of emerging concern (CECs) from the direct chemical use in aquaculture activities or surrounding industries is currently an issue of increasing concern as these CECs exert acute and chronic effects on living organisms. CECs have been detected in aquaculture water, sediment, and culture species, and antibiotics, antifoulants, and disinfectants are the commonly detected groups. Through accumulation, CECs can reside in the tissue of aquaculture products and eventually consumed by humans. Currently, effluents containing CECs are discharged to the surrounding environment while producing sediments that eventually contaminate rivers as receiving bodies. The rearing (grow-out) stages of aquaculture activities are issues regarding CECs-contamination in aquaculture covering water, sediment, and aquaculture products. Proper regulations should be imposed on all aquaculturists to control chemical usage and ensure compliance to guidelines for appropriate effluent treatment. Several techniques for treating aquaculture effluents contaminated by CECs have been explored, including adsorption, wetland construction, photocatalysis, filtration, sludge activation, and sedimentation. The challenges imposed by CECs on aquaculture activities are discussed for the purpose of obtaining insights into current issues and providing future approaches for resolving associated problems. Stakeholders, such as researchers focusing on environment and aquaculture, are expected to benefit from the presented results in this article. In addition, the results may be useful in establishing aquaculture-related CECs regulations, assessing toxicity to living biota, and preventing pollution.
    Matched MeSH terms: Environmental Monitoring
  17. Ahmad AK, Nur-Hazwani MNR, Aisyah Syed Omar S, Aweng ER, Taweel A
    Pak J Biol Sci, 2020 Jan;23(11):1374-1379.
    PMID: 33274864 DOI: 10.3923/pjbs.2020.1374.1379
    BACKGROUND AND OBJECTIVE: Malaysia reported experiencing serious invasive species intrusion in various rivers and threatening some local species to distinct. A study was undertaken to estimate and compare their composition and species richness in two pristine and two disturbed freshwater ecosystems.

    MATERIALS AND METHODS: Invasive and local species growth pattern was also estimated using length-weight analysis. Sampling was conducted using cast net and electric shock in each river twice in 12 months. Fish collected were identified, photo captured and measured for their weight and length. The growth pattern was also estimated using length-weight analysis.

    RESULTS: A total of 188 fishes were caught, comprises of 8 families and 15 species (ten local species with 119 individuals and five alien species with 69 individuals). Sistomus binotatus was the most dominant local species, whereas Tilapia nilotica was the most dominant alien species. There is no significant difference in composition between local and invasive species occur indicates the raise of alien species in those ecosystems even local species still dominated. The growth pattern for Sistomus binotatus and Clarias batrachus is isometric in the pristine ecosystem but negative isometric in disturbed rivers. Contrary, Tilapia nilotica has isometric for both ecosystems.

    CONCLUSION: This study concluded the capability and potential of colonization of alien species in stress ecosystem especially Tilapia nilotica. Thus, there is potential colonization of alien in Malaysia freshwater systems and a threat to local species due to food competition, site preferences and survival ability.

    Matched MeSH terms: Environmental Monitoring
  18. Ahmad NI, Noh MF, Mahiyuddin WR, Jaafar H, Ishak I, Azmi WN, et al.
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3672-86.
    PMID: 25256581 DOI: 10.1007/s11356-014-3538-8
    This study was conducted to determine the concentration of total mercury in the edible portion of 46 species of marine fish (n = 297) collected from selected major fish landing ports and wholesale markets throughout Peninsular Malaysia. Samples were collected in June to December 2009. Prior to analysis, the fish samples were processed which consisted of drying at 65 °C until a constant weight was attained; then, it was grounded and digested by a microwave digestion system. The analytical determination was carried out by using a mercury analysis system. Total mercury concentration among fish species was examined. The results showed that mercury concentrations were found significantly higher (p 20 cm) and were positively related with fish size (length and weight) in all fish samples. Despite the results, the level of mercury in marine fish did not exceed the permitted levels of Malaysian and JECFA guideline values at 0.5 mg/kg methylmercury in fish.
    Matched MeSH terms: Environmental Monitoring
  19. Ahmad UK, Ujang Z, Woon CH, Indran S, Mian MN
    Water Sci Technol, 2004;50(9):137-44.
    PMID: 15581005
    Land application of sludge as fertilizers is a way of disposal and recycling of sludge. However, public concern has arisen due to the fact that organic contaminants in sludge may ultimately enter the food chain. Hence the need arises to analyse the organic contaminants such as PAHs and OCPs in sludge. In this study, Soxhlet was utilised as the extraction method and the extracts subjected to extensive cleanup via either silica columns or solid phase extraction cartridges prior to analysis using gas chromatography or high performance liquid chromatography. Sludge samples were collected from the drying beds of oxidation ponds in three locations in South Johore. OCPs such as heptachlor, dieldrin and pp-DDT were detected in low amounts (52-159 mg/kg) whereas PAHs such as naphthalene, phenanthrene, fluoranthene and benzo(a)pyrene were detected in the range of 0.2-5.5 mg/kg dry mass. Subcritical water extraction (SWE) recovery studies of PAHs were also performed from spiked sludge samples. Although a recovery range of 41-68% was obtained using the SWE method, the results indicated the usefulness of the technique as an alternative to Soxhlet extraction for the analysis of PAHs in sludge samples.
    Matched MeSH terms: Environmental Monitoring
  20. Ahmad UK, Ulang Z, Yusop Z, Fong TL
    Water Sci Technol, 2002;46(9):117-25.
    PMID: 12448460
    The complex nature of natural organic matter (NOM), and the impact of this matter on drinking water quality have necessitated the characterization studies of NOM. A fluorescence technique for the characterization of NOM in Malaysian river water is reported. Water samples from several river sampling sites were collected and concentrated using a low-pressure reverse osmosis (LPROM). Solid phase extraction (SPE) using C18 extraction cartridges were used to fractionate the water samples into humic and non-humic fractions. To differentiate and classify various types of humic substances, fluorescence was applied in emission, excitation and in synchronous-scan modes. A synchronous spectral profile was found to be able to differentiate humic and fulvic acids better than the emission or excitation spectra. Synchronous excitation spectra showed different spectral patterns for the water samples due to different origin. All water samples showed the presence of both fulvic and humic acids.
    Matched MeSH terms: Environmental Monitoring/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links