This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.
Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nanostructured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated
photovoltaics (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails.
Bioethanol is a very environmentally friendly liquid biofuel that is not only renewable, but also sustainable. It is currently
deemed as a highly suitable additive and substitute energy source to replace fossil based fuel. In this study, bioethanol
was produced from sago hampas by using commercial amylase, cellulase and Saccharomyces cerevisiae via sequential
saccharification and simultaneous fermentation (SSSF), a modified version of the simultaneous saccharification and
fermentation (SSF) process. SSSF was performed on sago hampas at 2.5 and 5.0% (w/v) feedstock load for five days. The
samples taken from the SSSF broths were analysed via high performance liquid chromatography (HPLC) for ethanol, glucose
and acetic acid production. From the results obtained, SSSF with 5.0% sago hampas loading exhibited the highest ethanol
production at 14.13 g/L (77.43% of theoretical ethanol yield), while SSSF using 2.5% sago hampas loading produced
ethanol at 6.45 g/L (69.24% of theoretical ethanol yield). This study has shown that ethanol not only can be produced
from sago hampas using different enzyme mixtures and S. cerevisiae via SSSF, but yields were also high, making this
process highly promising for the production of cheap and sustainable ethanol as fuel.
Nipa (Nypa fruticans) is one of the most widely distributed and useful palm in the mangrove forests in the South, Southeast Asia and Oceania. Its distribution area is known to be larger in ancient time than at present, as evidenced by its fossils found in North America, South America, Egypt and Europe. Nipa has a wide diversity of use. Traditionally it is used as roof materials, cigarette wrapper, medicine and its sap is fermented to alcohol. Recently, research on nipa has focused on its potential use as a biofuel crop because it has several advantages compared with other biofuel-alcohol crops. For example it has high alcohol content, no competition with other crop for agricultural land and no bagasse disposal problem. In spite of such usefulness, scientific reports on biology of nipa are limited. Information on genetic diversity, cytogenetics and chemical composition are lacking for nipa plant. On the other hand, morphological characters of nipa have been described in many reports. This paper attempted to provide a general review of the nipa plant based on available literatures.
Late Pleistocene hominin postcranial specimens from Southeast Asia are relatively rare. Here we describe and place into temporal and geographic context two partial femora from the site of Trinil, Indonesia, which are dated stratigraphically and via Uranium-series direct dating to ca. 37-32 ka. The specimens, designated Trinil 9 and 10, include most of the diaphysis, with Trinil 9 being much better preserved. Microcomputed tomography is used to determine cross-sectional diaphyseal properties, with an emphasis on midshaft anteroposterior to mediolateral bending rigidity (Ix/Iy), which has been shown to relate to both body shape and activity level in modern humans. The body mass of Trinil 9 is estimated from cortical area and reconstructed length using new equations based on a Pleistocene reference sample. Comparisons are carried out with a large sample of Pleistocene and Holocene East Asian, African, and European/West Asian femora. Our results show that Trinil 9 has a high Ix/Iy ratio, most consistent with a relatively narrow-bodied male from a mobile hunting-gathering population. It has an estimated body mass of 55.4 kg and a stature of 156 cm, which are small relative to Late Pleistocene males worldwide, but larger than the penecontemporaneous Deep Skull femur from Niah Cave, Malaysia, which is very likely female. This suggests the presence of small-bodied active hunter-gatherers in Southeast Asia during the later Late Pleistocene. Trinil 9 also contrasts strongly in morphology with earlier partial femora from Trinil dating to the late Early-early Middle Pleistocene (Femora II-V), and to a lesser extent with the well-known complete Femur I, most likely dating to the terminal Middle-early Late Pleistocene. Temporal changes in morphology among femoral specimens from Trinil parallel those observed in Homo throughout the Old World during the Pleistocene and document these differences within a single site.
Nine isolated fossil Pongo teeth from two cave sites in Peninsular Malaysia are reported. These are the first fossil Pongo specimens recorded in Peninsular Malaysia and represent significant southward extensions of the ancient Southeast Asian continental range of fossil Pongo during two key periods of the Quaternary. These new records from Peninsular Malaysia show that ancestral Pongo successfully passed the major biogeographical divide between mainland continental Southeast Asia and the Sunda subregion before 500 ka (thousand years ago). If the presence of Pongo remains in fossil assemblages indicates prevailing forest habitat, then the persistence of Pongo at Batu Caves until 60 ka implies that during the Last Glacial Phase sufficient forest cover persisted in the west coast plain of what is now Peninsular Malaysia at least ten millennia after a presumed corridor of desiccation had extended to central and east Java. Ultimately, environmental conditions of the peninsula during the Last Glacial Maximum evidently became inhospitable for Pongo, causing local extinction. Following post-glacial climatic amelioration and reforestation, a renewed sea barrier prevented re-colonization from the rainforest refugium in Sumatra, accounting for the present day absence of Pongo in apparently hospitable lowland evergreen rainforest of Peninsular Malaysia. The new teeth provide further evidence that Pongo did not undergo a consistent trend toward dental size reduction over time.
The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51-55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.
The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939-7751 calibrated years before present (yr cal BP; present taken as AD 1950), and Gua Cha in Malaysia (4.4-4.2 kyr cal BP)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia-New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3-7.2 kyr cal BP at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the 'Toalean' technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.
The small pseudoscorpion family Pseudochiridiidae Chamberlin, 1923 comprises two genera and 12 extant species recorded from Asia (Burma, Christmas Island, Indonesia, India, Nepal, Malaysia, New Guinea, Philippines, Nicobars and Sumba), eastern, central and southern Africa (Chad, D.R. Congo, Kenya, South Africa, Tanzania), Madagascar, Seychelles (Aldabra), North America (Florida) and the Caribbean Islands of Dominican Republic and Cuba (Harvey 2013, Barba & Barroso 2013); one unidentified species is mentioned for the fauna of Mexico (Ceballos 2004). A fossil species has been described from Dominican amber by Judson (2007), who predicted the presence of this family in South America.
Over many years of his life, the British naturalist Alfred Russel Wallace (1823-1913) explored the tropical forests of Malaysia, collecting numerous specimens, including hundreds of birds, many of them new to science. Subsequently, Wallace published a series of papers on systematic ornithology, and discovered a new species on top of a volcano on Ternate, where he wrote, in 1858, his famous essay on natural selection. Based on this hands-on experience, and an analysis of an Archaeopteryx fossil, Wallace suggested that birds may have descended from dinosaurian ancestors. Here, we describe the "dinosaur-bird hypothesis" that originated with the work of Thomas H. Huxley (1825-1895). We present the strong evidence linking theropod dinosaurs to birds, and briefly outline the long and ongoing controversy around this concept. Dinosaurs preserving plumage, nesting sites and trace fossils provide overwhelming evidence for the dinosaurian origin of birds. Based on these recent findings of paleontological research, we conclude that extant birds indeed descended, with some modifications, from small, Mesozoic theropod dinosaurs. In the light of Wallace's view of bird origins, we critically evaluate recent opposing views to this idea, including Ernst Mayr's (1904-2005) arguments against the "dinosaur-bird hypothesis", and document that this famous ornithologist was not correct in his assessment of this important aspect of vertebrate evolution.
Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.
Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
The origin of the elephant on the island of Borneo remains elusive. Research has suggested two alternative hypotheses: the Bornean elephant stems either from a recent introduction in the 17th century or from an ancient colonization several hundreds of thousands years ago. Lack of elephant fossils has been interpreted as evidence for a very recent introduction, whereas mtDNA divergence from other Asian elephants has been argued to favor an ancient colonization. We investigated the demographic history of Bornean elephants using full-likelihood and approximate Bayesian computation analyses. Our results are at odds with both the recent and ancient colonization hypotheses, and favour a third intermediate scenario. We find that genetic data favour a scenario in which Bornean elephants experienced a bottleneck during the last glacial period, possibly as a consequence of the colonization of Borneo, and from which it has slowly recovered since. Altogether the data support a natural colonization of Bornean elephants at a time when large terrestrial mammals could colonise from the Sunda shelf when sea levels were much lower. Our results are important not only in understanding the unique history of the colonization of Borneo by elephants, but also for their long-term conservation.