Displaying publications 21 - 40 of 111 in total

Abstract:
Sort:
  1. Chan BT, Lim E, Chee KH, Abu Osman NA
    Comput Biol Med, 2013 May;43(4):377-85.
    PMID: 23428371 DOI: 10.1016/j.compbiomed.2013.01.013
    The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method.
    Matched MeSH terms: Hydrodynamics*
  2. Chang H, Ho CD, Chen YH, Chen L, Hsu TH, Lim JW, et al.
    Membranes (Basel), 2021 Apr 07;11(4).
    PMID: 33916991 DOI: 10.3390/membranes11040266
    Two geometric shape turbulence promoters (circular and square of same areas) of different array patterns using three-dimensional (3D) printing technology were designed for direct contact membrane distillation (DCMD) modules in the present study. The DCMD device was performed at middle temperature operation (about 45 °C to 60 °C) of hot inlet saline water associated with a constant temperature of inlet cold stream. Attempts to reduce the disadvantageous temperature polarization effect were made inserting the 3D turbulence promoters to promote both the mass and heat transfer characteristics in improving pure water productivity. The additive manufacturing 3D turbulence promoters acting as eddy promoters could not only strengthen the membrane stability by preventing vibration but also enhance the permeate flux with lessening temperature polarization effect. Therefore, the 3D turbulence promoters were individually inserted into the flow channel of the DCMD device to create vortices in the flow stream and increase turbulent intensity. The modeling equations for predicting the permeate flux in DCMD modules by inserting the manufacturing 3D turbulence promoter were investigated theoretically and experimentally. The effects of the operating conditions under various geometric shapes and array patterns of turbulence promoters on the permeate flux with hot inlet saline temperatures and flow rates as parameters were studied. The distributions of the fluid velocities were examined using computational fluid dynamics (CFD). Experimental study has demonstrated a great potential to significantly accomplish permeate flux enhancement in such new design of the DCMD system. The permeate flux enhancement for the DCMD module by inserting 3D turbulence promoters in the flow channel could provide a maximum relative increment of up to 61.7% as compared to that in the empty channel device. The temperature polarization coefficient (τtemp) was found in this study for various geometric shapes and flow patterns. A larger τtemp value (the less thermal resistance) was achieved in the countercurrent-flow operation than that in the concurrent-flow operation. An optimal design of the module with inserting turbulence promoters was also delineated when considering both permeate flux enhancement and energy utilization effectiveness.
    Matched MeSH terms: Hydrodynamics
  3. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
    Matched MeSH terms: Hydrodynamics
  4. Cher Pin, S., Rashmi, W., Khalid, M., Chong, C.H., Woo, M.W., Tee, L.H.
    MyJurnal
    The drying of Piper betle Linn (betel) leaf extract using a lab scale spray dryer was simulated using Computational Fluid Dynamics (CFD). Three different turbulent models (standard k-ε, RNG k-ε and realizable k-ε) were used in the present study to determine the most suitable model for predicting the flow profile. Parametric studies were also conducted to evaluate the effect of process variables on the final moisture content. Four different initial droplet sizes (36, 79, 123 and 166 μm) were tested with four sets of combination of hot air temperature (140 and 160°C) and feed rate (4, 9.5 and 15 ml/min). It was found that standard k-ε is the most suitable turbulent model to predict the flow behaviour Moreover, the lowest final moisture content present in samples was obtained at 140°C and a feed rate of 15.0 ml/min.
    Matched MeSH terms: Hydrodynamics
  5. Chong LC, Ganesan H, Yong CY, Tan WS, Ho KL
    PLoS One, 2019;14(2):e0211740.
    PMID: 30707739 DOI: 10.1371/journal.pone.0211740
    Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1-252 and 253-371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.
    Matched MeSH terms: Hydrodynamics
  6. Chun YT, Kok SK, Shahidan Radiman, Irman Abdul Rahman, Nur Farhana Amari
    Sains Malaysiana, 2014;43:623-628.
    Catanionic system using anionic sodium bis-(2ethylhexyl)sulfosuccinate (Am) and cationic cetyltrimethylammonium bromide (cTAB) is studied. The system is prepared by addition of CTAB solution to a prepared AOT solution until slight anionic-rich catanionic phase is produced. Catanionic system consists of the mixture of different types of surfactants and counterion due to electrostatic interaction between the oppositely charged surfactant. Both of these products affect the in surface activity of the surfactant. Hydrodynamic diameters decrease and clearer solution were seen with the increase of CTAB concentration in solution mixture. As a result, mixed surfactant with larger hydrophobic region and the presence of counterion will induce smaller vesicle to form in catanionic system.
    Matched MeSH terms: Hydrodynamics
  7. Corda JV, Shenoy BS, Ahmad KA, Lewis L, K P, Khader SMA, et al.
    Comput Methods Programs Biomed, 2022 Feb;214:106538.
    PMID: 34848078 DOI: 10.1016/j.cmpb.2021.106538
    BACKGROUND AND OBJECTIVE: Neonates are preferential nasal breathers up to 3 months of age. The nasal anatomy in neonates and infants is at developing stages whereas the adult nasal cavities are fully grown which implies that the study of airflow dynamics in the neonates and infants are significant. In the present study, the nasal airways of the neonate, infant and adult are anatomically compared and their airflow patterns are investigated.

    METHODS: Computational Fluid Dynamics (CFD) approach is used to simulate the airflow in a neonate, an infant and an adult in sedentary breathing conditions. The healthy CT scans are segmented using MIMICS 21.0 (Materialise, Ann arbor, MI). The patient-specific 3D airway models are analyzed for low Reynolds number flow using ANSYS FLUENT 2020 R2. The applicability of the Grid Convergence Index (GCI) for polyhedral mesh adopted in this work is also verified.

    RESULTS: This study shows that the inferior meatus of neonates accounted for only 15% of the total airflow. This was in contrast to the infants and adults who experienced 49 and 31% of airflow at the inferior meatus region. Superior meatus experienced 25% of total flow which is more than normal for the neonate. The highest velocity of 1.8, 2.6 and 3.7 m/s was observed at the nasal valve region for neonates, infants and adults, respectively. The anterior portion of the nasal cavity experienced maximum wall shear stress with average values of 0.48, 0.25 and 0.58 Pa for the neonates, infants and adults.

    CONCLUSIONS: The neonates have an underdeveloped nasal cavity which significantly affects their airway distribution. The absence of inferior meatus in the neonates has limited the flow through the inferior regions and resulted in uneven flow distribution.

    Matched MeSH terms: Hydrodynamics*
  8. Darlis N, Osman K, Padzillah MH, Dillon J, Md Khudzari AZ
    Artif Organs, 2018 May;42(5):493-499.
    PMID: 29280161 DOI: 10.1111/aor.13021
    Physiologically, blood ejected from the left ventricle in systole exhibited spiral flow characteristics. This spiral flow has been proven to have several advantages such as lateral reduction of directed forces and thrombus formation, while it also appears to be clinically beneficial in suppressing neurological complications. In order to deliver spiral flow characteristics during cardiopulmonary bypass operation, several modifications have been made on an aortic cannula either at the internal or at the outflow tip; these modifications have proven to yield better hemodynamic performances compared to standard cannula. However, there is no modification done at the inlet part of the aortic cannula for inducing spiral flow so far. This study was carried out by attaching a spiral inducer at the inlet of an aortic cannula. Then, the hemodynamic performances of the new cannula were compared with the standard straight tip end-hole cannula. This is achieved by modeling the cannula and attaching the cannula at a patient-specific aorta model. Numerical approach was utilized to evaluate the hemodynamic performance, and a water jet impact experiment was used to demonstrate the jet force generated by the cannula. The new spiral flow aortic cannula has shown some improvements by reducing approximately 21% of impinging velocity near to the aortic wall, and more than 58% reduction on total force generated as compared to standard cannula.
    Matched MeSH terms: Hydrodynamics
  9. Faizal WM, Ghazali NNN, Badruddin IA, Zainon MZ, Yazid AA, Ali MAB, et al.
    Comput Methods Programs Biomed, 2019 Oct;180:105036.
    PMID: 31430594 DOI: 10.1016/j.cmpb.2019.105036
    Obstructive sleep apnea is one of the most common breathing disorders. Undiagnosed sleep apnea is a hidden health crisis to the patient and it could raise the risk of heart diseases, high blood pressure, depression and diabetes. The throat muscle (i.e., tongue and soft palate) relax narrows the airway and causes the blockage of the airway in breathing. To understand this phenomenon computational fluid dynamics method has emerged as a handy tool to conduct the modeling and analysis of airflow characteristics. The comprehensive fluid-structure interaction method provides the realistic visualization of the airflow and interaction with the throat muscle. Thus, this paper reviews the scientific work related to the fluid-structure interaction (FSI) for the evaluation of obstructive sleep apnea, using computational techniques. In total 102 articles were analyzed, each article was evaluated based on the elements related with fluid-structure interaction of sleep apnea via computational techniques. In this review, the significance of FSI for the evaluation of obstructive sleep apnea has been critically examined. Then the flow properties, boundary conditions and validation of the model are given due consideration to present a broad perspective of CFD being applied to study sleep apnea. Finally, the challenges of FSI simulation methods are also highlighted in this article.
    Matched MeSH terms: Hydrodynamics*
  10. Faizal WM, Ghazali NNN, Khor CY, Badruddin IA, Zainon MZ, Yazid AA, et al.
    Comput Methods Programs Biomed, 2020 Nov;196:105627.
    PMID: 32629222 DOI: 10.1016/j.cmpb.2020.105627
    BACKGROUND AND OBJECTIVE: Human upper airway (HUA) has been widely investigated by many researchers covering various aspects, such as the effects of geometrical parameters on the pressure, velocity and airflow characteristics. Clinically significant obstruction can develop anywhere throughout the upper airway, leading to asphyxia and death; this is where recognition and treatment are essential and lifesaving. The availability of advanced computer, either hardware or software, and rapid development in numerical method have encouraged researchers to simulate the airflow characteristics and properties of HUA by using various patient conditions at different ranges of geometry and operating conditions. Computational fluid dynamics (CFD) has emerged as an efficient alternative tool to understand the airflow of HUA and in preparing patients to undergo surgery. The main objective of this article is to review the literature that deals with the CFD approach and modeling in analyzing HUA.

    METHODS: This review article discusses the experimental and computational methods in the study of HUA. The discussion includes computational fluid dynamics approach and steps involved in the modeling used to investigate the flow characteristics of HUA. From inception to May 2020, databases of PubMed, Embase, Scopus, the Cochrane Library, BioMed Central, and Web of Science have been utilized to conduct a thorough investigation of the literature. There had been no language restrictions in publication and study design of the database searches. A total of 117 articles relevant to the topic under investigation were thoroughly and critically reviewed to give a clear information about the subject. The article summarizes the review in the form of method of studying the HUA, CFD approach in HUA, and the application of CFD for predicting HUA obstacle, including the type of CFD commercial software are used in this research area.

    RESULTS: This review found that the human upper airway was well studied through the application of computational fluid dynamics, which had considerably enhanced the understanding of flow in HUA. In addition, it assisted in making strategic and reasonable decision regarding the adoption of treatment methods in clinical settings. The literature suggests that most studies were related to HUA simulation that considerably focused on the aspects of fluid dynamics. However, there is a literature gap in obtaining information on the effects of fluid-structure interaction (FSI). The application of FSI in HUA is still limited in the literature; as such, this could be a potential area for future researchers. Furthermore, majority of researchers present the findings of their work through the mechanism of airflow, such as that of velocity, pressure, and shear stress. This includes the use of Navier-Stokes equation via CFD to help visualize the actual mechanism of the airflow. The above-mentioned technique expresses the turbulent kinetic energy (TKE) in its result to demonstrate the real mechanism of the airflow. Apart from that, key result such as wall shear stress (WSS) can be revealed via turbulent kinetic energy (TKE) and turbulent energy dissipation (TED), where it can be suggestive of wall injury and collapsibility tissue to the HUA.

    Matched MeSH terms: Hydrodynamics*
  11. Fulazzaky MA
    Bioprocess Biosyst Eng, 2013 Jan;36(1):11-21.
    PMID: 22622964 DOI: 10.1007/s00449-012-0756-7
    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis.
    Matched MeSH terms: Hydrodynamics
  12. Gallagher MT, Cupples G, Ooi EH, Kirkman-Brown JC, Smith DJ
    Hum Reprod, 2019 07 08;34(7):1173-1185.
    PMID: 31170729 DOI: 10.1093/humrep/dez056
    STUDY QUESTION: Can flagellar analyses be scaled up to provide automated tracking of motile sperm, and does knowledge of the flagellar waveform provide new insight not provided by routine head tracking?

    SUMMARY ANSWER: High-throughput flagellar waveform tracking and analysis enable measurement of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses, which are not possible by tracking the sperm head alone.

    WHAT IS KNOWN ALREADY: The clinical gold standard for sperm motility analysis comprises a manual analysis by a trained professional, with existing automated sperm diagnostics [computer-aided sperm analysis (CASA)] relying on tracking the sperm head and extrapolating measures. It is not currently possible with either of these approaches to track the sperm flagellar waveform for large numbers of cells in order to unlock the potential wealth of information enclosed within.

    STUDY DESIGN, SIZE, DURATION: The software tool in this manuscript has been developed to enable high-throughput, repeatable, accurate and verifiable analysis of the sperm flagellar beat.

    PARTICIPANTS/MATERIALS, SETTING, METHODS: Using the software tool [Flagellar Analysis and Sperm Tracking (FAST)] described in this manuscript, we have analysed 176 experimental microscopy videos and have tracked the head and flagellum of 205 progressive cells in diluted semen (DSM), 119 progressive cells in a high-viscosity medium (HVM) and 42 stuck cells in a low-viscosity medium. Unscreened donors were recruited at Birmingham Women's and Children's NHS Foundation Trust after giving informed consent.

    MAIN RESULTS AND THE ROLE OF CHANCE: We describe fully automated tracking and analysis of flagellar movement for large cell numbers. The analysis is demonstrated on freely motile cells in low- and high-viscosity fluids and validated on published data of tethered cells undergoing pharmacological hyperactivation. Direct analysis of the flagellar beat reveals that the CASA measure 'beat cross frequency' does not measure beat frequency; attempting to fit a straight line between the two measures gives ${\mathrm{R}}^2$ values of 0.042 and 0.00054 for cells in DSM and HVM, respectively. A new measurement, track centroid speed, is validated as an accurate differentiator of progressive motility. Coupled with fluid mechanics codes, waveform data enable extraction of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses. We provide a powerful and accessible research tool, enabling connection of the mechanical activity of the sperm to its motility and effect on its environment.

    LARGE SCALE DATA: The FAST software package and all documentation can be downloaded from www.flagellarCapture.com.

    LIMITATIONS, REASONS FOR CAUTION: The FAST software package has only been tested for use with negative phase contrast microscopy. Other imaging modalities, with bright cells on a dark background, have not been tested but may work. FAST is not designed to analyse raw semen; it is specifically for precise analysis of flagellar kinematics, as that is the promising area for computer use. Flagellar capture will always require that cells are at a dilution where their paths do not frequently cross.

    WIDER IMPLICATIONS OF THE FINDINGS: Combining tracked flagella with mathematical modelling has the potential to reveal new mechanistic insight. By providing the capability as a free-to-use software package, we hope that this ability to accurately quantify the flagellar waveform in large populations of motile cells will enable an abundant array of diagnostic, toxicological and therapeutic possibilities, as well as creating new opportunities for assessing and treating male subfertility.

    STUDY FUNDING/COMPETING INTEREST(S): M.T.G., G.C., J.C.K-B. and D.J.S. gratefully acknowledge funding from the Engineering and Physical Sciences Research Council, Healthcare Technologies Challenge Award (Rapid Sperm Capture EP/N021096/1). J.C.K-B. is funded by a National Institute of Health Research (NIHR) and Health Education England, Senior Clinical Lectureship Grant: The role of the human sperm in healthy live birth (NIHRDH-HCS SCL-2014-05-001). This article presents independent research funded in part by the NIHR and Health Education England. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The data for experimental set (2) were funded through a Wellcome Trust-University of Birmingham Value in People Fellowship Bridging Award (E.H.O.).The authors declare no competing interests.

    Matched MeSH terms: Hydrodynamics
  13. Govindaraju K, Kamangar S, Badruddin IA, Viswanathan GN, Badarudin A, Salman Ahmed NJ
    Atherosclerosis, 2014 Apr;233(2):630-635.
    PMID: 24549189 DOI: 10.1016/j.atherosclerosis.2014.01.043
    Functional assessment of a coronary artery stenosis severity is generally assessed by fractional flow reserve (FFR), which is calculated from pressure measurements across the stenosis. The purpose of this study is to investigate the effect of porous media of the stenosed arterial wall on this diagnostic parameter. To understand the role of porous media on the diagnostic parameter FFR, a 3D computational simulations of the blood flow in rigid and porous stenotic artery wall models are carried out under steady state and transient conditions for three different percentage area stenoses (AS) corresponding to 70% (moderate), 80% (intermediate), and 90% (severe). Blood was modeled as a non Newtonian fluid. The variations of pressure drop across the stenosis and diagnostic parameter were studied in both models. The FFR decreased in proportion to the increase in the severity of the stenosis. The relationship between the percentage AS and the FFR was non linear and inversely related in both the models. The cut-off value of 0.75 for FFR was observed at 81.89% AS for the rigid artery model whereas 83.61% AS for the porous artery wall model. This study demonstrates that the porous media consideration on the stenotic arterial wall plays a substantial role in defining the cut-off value of FFR. We conclude that the effect of porous media on FFR, could lead to misinterpretation of the functional severity of the stenosis in the region of 81.89 %-83.61% AS.
    Matched MeSH terms: Hydrodynamics
  14. Govindaraju K, Viswanathan GN, Badruddin IA, Kamangar S, Salman Ahmed NJ, Al-Rashed AA
    Comput Methods Biomech Biomed Engin, 2016 Nov;19(14):1541-9.
    PMID: 27052093 DOI: 10.1080/10255842.2016.1170119
    This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.
    Matched MeSH terms: Hydrodynamics*
  15. Gul T, Islam S, Shah RA, Khan I, Khalid A, Shafie S
    PLoS One, 2014;9(11):e103843.
    PMID: 25383797 DOI: 10.1371/journal.pone.0103843
    This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed.
    Matched MeSH terms: Hydrodynamics*
  16. Gul T, Islam S, Shah RA, Khan I, Shafie S
    PLoS One, 2014;9(6):e97552.
    PMID: 24949988 DOI: 10.1371/journal.pone.0097552
    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
    Matched MeSH terms: Hydrodynamics*
  17. Gul T, Islam S, Shah RA, Khalid A, Khan I, Shafie S
    PLoS One, 2015;10(7):e0126698.
    PMID: 26147287 DOI: 10.1371/journal.pone.0126698
    This paper studies the unsteady magnetohydrodynamics (MHD) thin film flow of an incompressible Oldroyd-B fluid over an oscillating inclined belt making a certain angle with the horizontal. The problem is modeled in terms of non-linear partial differential equations with some physical initial and boundary conditions. This problem is solved for the exact analytic solutions using two efficient techniques namely the Optimal Homotopy Asymptotic Method (OHAM) and Homotopy Perturbation Method (HPM). Both of these solutions are presented graphically and compared. This comparison is also shown in tabular form. An excellent agreement is observed. The effects of various physical parameters on velocity have also been studied graphically.
    Matched MeSH terms: Hydrodynamics*
  18. Haditiar Y, Putri MR, Ismail N, Muchlisin ZA, Ikhwan M, Rizal S
    Heliyon, 2020 Sep;6(9):e04828.
    PMID: 32939416 DOI: 10.1016/j.heliyon.2020.e04828
    Malacca Strait (MS) has an important role and potential for many countries. It is a major transportation route for oil and commodities across continents. In addition, various activities such as shipping, fishing, aquaculture, oil drilling, and energy are also carried out in MS. Tides strongly affect the MS environment so that it becomes a major parameter in MS management. This paper is the first study, which presents MS tidal hydrodynamics based on a baroclinic and nonhydrostatic approach. Tidal hydrodynamics in MS and the surrounding waters were assessed using tidal forces, temperature, salinity, and density. This study analyzes the amplitude, phase, current ellipses, and semi-major axis of the tides. These variables are obtained from the simulation results of the three-dimensional numerical models of M2 tides and combined tides (M2, S2, N2, K1, and O1) with nonhydrostatic models. Then the results obtained are verified by observation data. Amplitude and phase of the tidal wave in MS originate from two directions, namely the northern part of MS (Andaman Sea) and the South China Sea (SCS). Tides from the north of MS propagate into the MS, while tides from the SCS travel to Singapore Waters (SW) and the south of MS. This causes a complex residual flow in SW and shoaling in the middle of MS. Shoaling in the middle of MS is characterized by a large amplitude and semi-major, as in B. Siapiapi. The results of this analysis show that tidal waves are dominated by semidiurnal types rather than diurnal types. The M2 current ellipse has dominantly anticlockwise rotation along the west of the MS, while along the east of MS, it has generally a clockwise rotation.
    Matched MeSH terms: Hydrodynamics
  19. Hassan MA, Mahmoodian R, Hamdi M
    Sci Rep, 2014;4:3724.
    PMID: 24430621 DOI: 10.1038/srep03724
    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.
    Matched MeSH terms: Hydrodynamics
  20. Hussanan A, Zuki Salleh M, Tahar RM, Khan I
    PLoS One, 2014;9(10):e108763.
    PMID: 25302782 DOI: 10.1371/journal.pone.0108763
    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
    Matched MeSH terms: Hydrodynamics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links