Displaying publications 21 - 40 of 91 in total

Abstract:
Sort:
  1. Chuman Y, Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, Tan NH, et al.
    Toxicon, 2000 Mar;38(3):449-62.
    PMID: 10669032
    In accordance with detection of a few phospholipase A2 (PLA2) isozyme genes by Southern blot analysis, only two cDNAs, named NnkPLA-I , and NnkPLA-II, encoding group I PLA2s, NnkPLA-I and NnkPLA-II, respectively, were isolated from the venom gland cDNA library of Elapinae Naja naja kaouthia of Malaysia. NnkPLA-I and NnkPLA-II showed four amino acid substitutions, all of which were brought about by single nucleotide substitution. No existence of clones encoding CM-II and CM-III, PLA2 isozymes which had been isolated from the venom of N. naja kaouthia of Thailand, in Malaysian N. naja kaouthia venom gland cDNA library was verified by dot blot hybridization analysis with particular probes. NnkPLA-I and NnkPLA-II differed from CM-II and CM-III with four and two amino acid substitutions, respectively, suggesting that their molecular evolution is regional. The comparison of NnkPLA-I, NnkPLA-II and cDNAs encoding other group I snake venom gland PLA2s indicated that the 5'- and 3'-untranslated regions are more conserved than the mature protein-coding region and that the number of nucleotide substitutions per nonsynonymous site is almost equal to that per synonymous site in the protein-coding region, suggesting that accelerated evolution has occurred in group I venom gland PLA2s possibly to acquire new physiological functions.
    Matched MeSH terms: Isoenzymes/genetics; Isoenzymes/chemistry
  2. Pustenko A, Nocentini A, Balašova A, Alafeefy A, Krasavin M, Žalubovskis R, et al.
    J Enzyme Inhib Med Chem, 2020 Dec;35(1):245-254.
    PMID: 31790605 DOI: 10.1080/14756366.2019.1695795
    A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.
    Matched MeSH terms: Isoenzymes/antagonists & inhibitors; Isoenzymes/metabolism
  3. Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC
    Molecules, 2018 05 07;23(5).
    PMID: 29735886 DOI: 10.3390/molecules23051100
    The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
    Matched MeSH terms: Isoenzymes/metabolism; Isoenzymes/chemistry
  4. Lin H, Ng AWR, Wong CW
    Food Sci Biotechnol, 2016;25(Suppl 1):91-96.
    PMID: 30263491 DOI: 10.1007/s10068-016-0103-x
    Purification and characterization of polyphenol oxidase (PPO) from Chinese parsley (Coriandrum sativum) were achieved. Crude PPO exhibited an enzyme activity of 1,952.24 EU/mL. PPO was partially purified up to 6.52x with a 10.89% yield using gel filtration chromatography. Maximal PPO activity was found at 35°C, pH 8.0 for 4-methylcatechol and at 40°C, pH 7.0 for catechol. PPO showed a higher affinity towards 4-methylcatechol, but a higher thermal stability when reacting with catechol. LCysteine was a better inhibitor than citric acid for reducing PPO activity at concentrations of 1 and 3mM in the presence of either substrate. Two 46 kDa isoenzymes were identified using SDS-PAGE. Isolation and characterization of Chinese parsley serves as a guideline for prediction of enzyme behavior leading to effective prevention of enzymatic browning during processing and storage, including inhibition and inactivation of PPO.
    Matched MeSH terms: Isoenzymes
  5. Muslim A, Hyakumachi M, Kageyama K, Suwandi S
    Trop Life Sci Res, 2019 Jan;30(1):109-122.
    PMID: 30847036 DOI: 10.21315/tlsr2019.30.1.7
    Treatment with hypovirulent binucleate Rhizoctonia (HBNR) isolates induced systemic resistance against anthracnose infected by Colletotrichum orbiculare in cucumber, as there were no direct interaction between HBNR and C. orbiculare. This is because of the different distances between HBNR and C. orbiculare, where the root was treated with HBNR isolate and C. orbiculare was challenged and inoculated in leaves or first true leaves were treated with HBNR isolate and C. orbiculare was challenged and inoculated in second true leaves. The use of barley grain inocula and culture filtrates of HBNR significantly reduced the lesion diameter compared to the control (p = 0.05). The total lesion diameter reduction by applying barley grain inoculum of HBNR L2, W1, W7, and Rhv7 was 28%, 44%, 39%, and 40%, respectively. Similar results was also observed in treatment using culture filtrate, and the reduction of total lesion diameter by culture filtrate of HBNR L2, W1, W7, and Rhv7 was 45%, 46%, 42%, and 48%, respectively. When cucumber root was treated with culture filtrates of HBNR, the lignin was enhanced at the pathogen penetration, which is spread along the epidermis tissue of cucumber hypocotyls. Peroxidase activity in hypocotyls in the treated cucumber plant with culture filtrates of HBNR significantly increased before and after inoculation of pathogens as compared to the control. Significant enhancement was also observed in the fast-moving anodic peroxidase isozymes in the treated plants with culture filtrates of HBNR. The results showed the elicitor(s) contained in culture filtrates in HBNR. The lignin deposition as well as the peroxidase activity is an important step to prevent systemically immunised plants from pathogen infection.
    Matched MeSH terms: Isoenzymes
  6. Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, et al.
    Toxicon, 1997 Jan;35(1):27-37.
    PMID: 9028006
    cDNAs encoding three phospholipase A2 (PLA2) isoforms in Naja naja sputatrix were cloned and characterized. One of them encoded an acidic PLA2 (APLA) while the others encoded neutral PLA2 (NPLA-1 and NPLA-2). The specific characteristics of APLA and NPLA were attributed to mutations at nt139 and nt328 from G to C and G to A, respectively, resulting in amino acid substitutions from Asp20 and 83 in APLA to His20 and Asn83 in NPLA. Amino acid sequencing of purified protein also showed the presence of this Asp20 and His20 in APLA and NPLA, respectively. The cDNA encoding one of the PLA2 (NAJPLA-2A), when expressed in Escherichia coli, yielded a protein that exhibited PLA2 activity.
    Matched MeSH terms: Isoenzymes/genetics*; Isoenzymes/isolation & purification; Isoenzymes/chemistry*
  7. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
    Matched MeSH terms: Isoenzymes/classification; Isoenzymes/genetics; Isoenzymes/metabolism
  8. Karim K, Giribabu N, Muniandy S, Salleh N
    Syst Biol Reprod Med, 2016;62(1):57-68.
    PMID: 26709452 DOI: 10.3109/19396368.2015.1112699
    Changes in the uterus expression of carbonic anhydrase (CA) II, III, IX, XII, and XIII were investigated under the influence of sex-steroids in order to elucidate mechanisms underlying differential effects of these hormones on uterine pH. Uteri of ovariectomised rats receiving over three days either vehicle, estrogen, or progesterone or three days estrogen followed by three days either vehicle or progesterone were harvested. Messenger RNA (mRNA) and protein levels were quantified by real-time PCR and Western blotting, respectively. The distribution of CA isoenzymes proteins were examined by immunohistochemistry. The levels of CAII, III, XII, and XIII mRNAs and proteins were elevated while levels of CAIX mRNA and protein were reduced following progesterone-only and estrogen plus progesterone treatment, compared to the control and estrogen plus vehicle, respectively. Following estrogen treatment, expression of CAII, IX, XII, and CAXIII mRNAs and proteins were reduced, but remained at a level higher than control, except for CAIX, where its level was higher than the control and following progesterone treatment. Under progesterone-only and estrogen plus progesterone influences, high levels of CAII, III, XII, and XIII were observed in uterine lumenal and glandular epithelia and myometrium. However, a high level of CAIX was observed only under the influence of estrogen at the similar locations. In conclusion, high expression of CAII, III, XII, and XIII under the influence of progesterone and estrogen plus progesterone could result in the reduction of uterine tissue and fluid pH; however, the significance of high levels of CAIX expression under the influence of estrogen remains unclear.
    Matched MeSH terms: Isoenzymes/metabolism
  9. Prasankok P, Ota H, Toda M, Panha S
    Zoolog Sci, 2007 Feb;24(2):189-97.
    PMID: 17409732
    We examined allozyme variation in two camaenid tree snails, Amphidromus atricallosus and A. inversus, across two principal regions of Thailand and from Singapore, plus for A. inversus, one site in peninsular Malaysia. Using horizontal starch gel electrophoresis, 13 allozyme loci (11 polymorphic) were screened for A. atricallosus and 18 (5 polymorphic) for A. inversus. Heterozygosity was higher in A. atricallosus (Hexp=0.018-0.201, mean=0.085) than in A. inversus (Hexp=0-0.023, mean= 0.002). Genetic heterogeneity among samples was higher in A. inversus (Fst=0.965) than in A. atricallosus (Fst=0.781). Within A. atricallosus, populations were more differentiated in southern Thailand (Fst=0.551) than in eastern Thailand (Fst=0.144). The high Fst and low Hexp in populations of A. inversus suggest that this species is likely to have experienced a series of strong bottlenecks, perhaps occurring chiefly on offshore continental-shelf islands. The low Fst values of A. atricallosus in eastern Thailand suggest frequent gene flows among populations in this region. The southern and eastern samples of A. atricallosus exhibited fixed allele differences at four loci and great genetic distance (Nei's D=0.485-0.946), suggesting that these two samples may actually represent, or else be evolving into, separate species.
    Matched MeSH terms: Isoenzymes/genetics*
  10. Boo NY, Hafidz H, Nawawi HM, Cheah FC, Fadzil YJ, Abdul-Aziz BB, et al.
    J Paediatr Child Health, 2005 Jul;41(7):331-7.
    PMID: 16014136
    This prospective study aimed to compare serum creatine kinase MB isoenzyme (CK-MB) mass concentrations and cardiac troponin T (cTnT) concentrations during the first 48 h of life in asphyxiated term infants.
    Matched MeSH terms: Isoenzymes/blood
  11. Ali ZM, Armugam S, Lazan H
    Phytochemistry, 1995 Mar;38(5):1109-14.
    PMID: 7766393
    The fruit extracts of ripening cv. Harumanis mango contained a number of glycosidases and glycanases. Among the glycosidases, beta-D-galactosidase (EC 3.2.1.23) appeared to be the most significant. The enzyme activity increased in parallel with increase in tissue softness during ripening. Mango beta-galactosidase was fractionated into three isoforms, viz. beta-galactosidase I, II and III by a combination of chromatographic procedures on DEAE-Sepharose CL-6B, CM-Sepharose and Sephacryl S-200 columns. Apparent Km values for the respective beta-galactosidase isoforms for p-nitrophenyl beta-D-galactoside were 3.7, 3.3 and 2.7 mM, and their Vmax values were 209, 1024 and 62 nkat mg-1 protein. Optimum activity occurred at ca pH 3.2 for beta-galactosidase I and II, and pH 3.6 for beta-galactosidase III. Mango beta-galactosidase and its isoforms have galactanase activity, and the activity of the latter in the crude extracts generally increased during ripening. The close correlation between changes in beta-galactosidase activity, tissue softness, and increased pectin solubility and degradation suggests that beta-galactosidase might play an important role in cell wall pectin modification and softening of mango fruit during ripening.
    Matched MeSH terms: Isoenzymes/physiology*
  12. Wong MV, Ho YW, Tan SG, Abdullah N, Jalaludin S
    FEMS Microbiol Lett, 1995 Dec 01;134(1):9-14.
    PMID: 8593960
    Isolates of anaerobic fungi obtained from the rumen, duodenum and faeces of sheep were identified as Piromyces mae based on their morphological characteristics observed using light microscopy. There was no significant morphological variation among the isolates of P. mae from the rumen, duodenum and faeces. Isozymes of 12 isolates of P. mae (one each from the rumen, duodenum and faeces from 4 different sheep) were analysed by PAGE. A total of 12 isozymes were studied and 5 isozyme loci were successfully typed. They were malic enzyme, malate dehydrogenase, shikimate dehydrogenase, alpha-esterase and beta-esterase. All the isolates of P. mae regardless of whether they were from the rumen, duodenum or faeces or from different animals produced very similar isozyme banding patterns for each of the enzyme systems. The similar isozyme profiles of the isolates indicate that they are of the same species although they exist in different regions of the alimentary tract.
    Matched MeSH terms: Isoenzymes/analysis*
  13. Lei-Injo LE, Tsou KC, Lo KW, Lopez CG, Balasegaram M, Ganesan S
    Cancer, 1980 Feb 15;45(4):795-8.
    PMID: 6244075
    An abnormal, fast-moving 5'-nucleotide phosphodiesterase isozyme was found in 90.0% of 20 Malaysian patients with primary hepatoma and in 23.5% of 391 Malaysian patients with various malignant diseases; it was also discovered in 42.9% of 14 Malaysian and American patients with clinically active hepatitis B infection; in 16.7% of 18 healthy American blood bank donors who were positive for hepatitis B surface antigen (HBsAg); in 13.9% of 287 healthy Malaysian blood bank donors, some positive for HBsAg; and in none of 160 healthy American donors who were negative for HBsAg. A correlation of this abnormal isozyme with hepatoma and with infectious hepatitis B is clearly evident.
    Matched MeSH terms: Isoenzymes/blood*
  14. Simon EM, Meyer EB, Preparata RM
    J. Protozool., 1985 Feb;32(1):183-9.
    PMID: 3989748
    Tetrahymena of the T. pyriformis complex collected from varied habitats in Malaysia, Thailand, and The People's Republic of China include strains of the micronucleate species T. americanis and T. canadensis and the amicronucleate T. pyriformis and T. elliotti. Two new breeding species are described-T. malaccensis from Malaysia and T. asiatica from China and Thailand. Two wild selfers from China and some of the amicronucleate strains from all three countries fall into isozymic groups similar to named micronucleate and amicronucleate species. The T. patula complex is represented by two groups of clones from Malaysia that fit the morphological description of T. vorax. They, however, have radically different isozymic electrophoretic patterns and both groups differ from those of previously described T. vorax. As their molecules indicate relationships to other "T. vorax" strains as distant as that between T. vorax and T. leucophrys, they are considered to be new species, T. caudata and T. silvana. A third new breeding species, T. nanneyi, was identified among strains previously collected in North America. Viable immature progeny were obtained from the new strains of the five breeding species. Maximum temperature tolerances were determined for the new strains of four of the breeding species.
    Matched MeSH terms: Isoenzymes/analysis
  15. Ho YW, Khoo IY, Tan SG, Abdullah N, Jalaludin S, Kudo H
    Microbiology (Reading), 1994 Jun;140 ( Pt 6):1495-504.
    PMID: 8081508
    Isozymes of 23 cultures of the anaerobic rumen fungi and seven cultures of aerobic chytridiomycete fungi were analysed by PAGE. A total of 14 isozyme loci were successfully typed by PAGE. They were peptidase A & C-1, peptidase A & C-2, peptidase D-1, peptidase D-2, malate dehydrogenase-1, malate dehydrogenase-2, esterase-1, esterase-2, malic enzyme-1, malic enzyme-2, isocitrate dehydrogenase, shikimate dehydrogenase, phosphoglucomutase and 6-phosphogluconate dehydrogenase. Isozyme analysis can be used for studying the genetic relationships among the different anaerobic rumen fungi and the aerobic chytridiomycete fungi and the isozyme characteristics can serve as additional taxonomic criteria in the classification of the anaerobic rumen fungi. A dendrogram based on the isozyme data demonstrated that the anaerobic rumen fungi formed a cluster, indicating a monophyletic group, distinctly separated from the aerobic chytridiomycete fungi. Piromyces communis and P. minutus showed a close relationship but P. spiralis showed a more distant relationship to both P. communis and P. minutus. Piromyces as a whole was more related to Caecomyces than to Neocallimastix. Orpinomyces was also found to be more related to Piromyces and Caecomyces than to Neocallimastix. Orpinomyces intercalaris C 70 from cattle showed large genetic variation from O. joyonii, indicating that it is a different species.
    Matched MeSH terms: Isoenzymes/analysis*
  16. Dehbozorgi M, Kamalidehghan B, Hosseini I, Dehghanfard Z, Sangtarash MH, Firoozi M, et al.
    Mol Med Rep, 2018 03;17(3):4195-4202.
    PMID: 29328413 DOI: 10.3892/mmr.2018.8377
    Polymorphisms in the cytochrome P (CYP) 450 family may cause adverse drug responses in individuals. Cytochrome P450 2C19 (CYP2C19) is a member of the CYP family, where the presence of the 681 G>A, 636 G>A and 806 C>T polymorphisms result in the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. In the current study, the frequency of the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles in an Iranian population cohort of different ethnicities were examined and then compared with previously published frequencies within other populations. Allelic and genotypic frequencies of the CYP2C19 alleles (*2, *3 and *17) were detected using polymerase chain reaction (PCR)‑restriction fragment length polymorphism analysis, PCR‑single‑strand conformation polymorphism analysis and DNA sequencing from blood samples of 1,229 unrelated healthy individuals from different ethnicities within the Iranian population. The CYP2C19 allele frequencies among the Iranian population were 21.4, 1.7, and 27.1% for the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. The frequency of the homozygous A/A variant of the CYP2C19*2 allele was significantly high and low in the Lur (P<0.001) and Caspian (P<0.001) ethnicities, respectively. However, the frequency of the homozygous A/A variant of the CYP2C19*3 allele was not detected in the Iranian cohort in the current study. The frequency of the heterozygous G/A variant of the CYP2C19*3 allele had the significantly highest and lowest frequency in the Fars (P<0.001) and Lur (P<0.001) groups, respectively. The allele frequency of the homozygous T/T variant of the CYP2C19*17 allele was significantly high in the Caspian (P<0.001) and low in the Kurd (P<0.05) groups. The frequency of the CYP2C19 alleles involved in drug metabolism, may improve the clinical understanding of the ethnic differences in drug responses, resulting in the advancement of the personalized medicine among the different ethnicities within the Iranian population.
    Matched MeSH terms: Isoenzymes/genetics
  17. Sing NN, Husaini A, Zulkharnain A, Roslan HA
    Biomed Res Int, 2017;2017:1325754.
    PMID: 28168194 DOI: 10.1155/2017/1325754
    Marasmius cladophyllus was examined for its ability to degradatively decolourise the recalcitrant dye Remazol Brilliant Blue R (RBBR) and screened for the production of ligninolytic enzymes using specific substrates. Monitoring dye decolourisation by the decrease in absorbance ratio of A592/A500 shows that the decolourisation of RBBR dye was associated with the dye degradation. Marasmius cladophyllus produces laccase and lignin peroxidase in glucose minimal liquid medium containing RBBR. Both enzyme activities were increased, with laccase activity recorded 70 times higher reaching up to 390 U L-1 on day 12. Further in vitro RBBR dye decolourisation using the culture medium shows that laccase activity was correlated with the dye decolourisation. Fresh RBBR dye continuously supplemented into the decolourised culture medium was further decolourised much faster in the subsequent round of the RBBR dye decolourisation. In vitro dye decolourisation using the crude laccase not only decolourised 76% of RBBR dye in just 19 hours but also decolourised 54% of Orange G and 33% of Congo red at the same period of time without the use of any exogenous mediator. This rapid dye decolourisation ability of the enzymes produced by M. cladophyllus thus suggested its possible application in the bioremediation of dye containing wastewater.
    Matched MeSH terms: Isoenzymes/metabolism
  18. Gan SH, Ismail R, Wan Adnan WA, Wan Z
    Clin Chim Acta, 2003 Mar;329(1-2):61-8.
    PMID: 12589966 DOI: 10.1016/s0009-8981(03)00019-6
    BACKGROUND: Hair roots provide a useful alternative to blood as a source of DNA for genotyping. Besides simple and non-invasive collections, the DNA extraction step is also easy to perform and is fast. The aim of our study is to determine if hair roots can be used to genotype all of the common CYP2D6 alleles for routine screening purposes.

    METHOD: The study complies with the Declaration of Helsinki. After obtaining informed consents, both blood and hair samples were collected from 92 patients for genotyping of the CYP2D6 gene. PCR was used to detect the following mutations: CYP2D6*1, *3, *4, *5, *9, *10, *17 and duplication gene. The results were compared where hair roots and blood were used as templates for DNA respectively.

    RESULTS: When blood was used as a source of DNA for genotyping, all of the investigated CYP2D6 alleles were successfully amplified. However, with hair roots, the genes with the larger fragment sizes: CYP2D6*5 and the duplication gene could not be amplified and the bands of other alleles investigated were faint when visualized under UV light.

    CONCLUSIONS: DNA extraction from hair roots and leucocytes yielded similar results but the DNA extracted from hair roots did not allow successful amplification of the longer genes such as the CYP2D6*5 and the duplication gene.
    Matched MeSH terms: Isoenzymes/genetics
  19. Woo WK, Dzaki N, Thangadurai S, Azzam G
    Sci Rep, 2019 Apr 15;9(1):6096.
    PMID: 30988367 DOI: 10.1038/s41598-019-42369-6
    CTP synthase (CTPSyn) is an essential metabolic enzyme, synthesizing precursors required for nucleotides and phospholipids production. Previous studies have also shown that CTPSyn is elevated in various cancers. In many organisms, CTPSyn compartmentalizes into filaments called cytoophidia. In Drosophila melanogaster, only its isoform C (CTPSynIsoC) forms cytoophidia. In the fruit fly's testis, cytoophidia are normally seen in the transit amplification regions close to its apical tip, where the stem-cell niche is located, and development is at its most rapid. Here, we report that CTPSynIsoC overexpression causes the lengthening of cytoophidia throughout the entirety of the testicular body. A bulging apical tip is found in approximately 34% of males overexpressing CTPSynIsoC. Immunostaining shows that this bulged phenotype is most likely due to increased numbers of both germline cells and spermatocytes. Through a microRNA (miRNA) overexpression screen, we found that ectopic miR-975 concurrently increases both the expression levels of CTPSyn and the length of its cytoophidia. The bulging testes phenotype was also recovered at a penetration of approximately 20%. However, qPCR assays reveal that CTPSynIsoC and miR-975 overexpression each provokes a differential response in expression of a number of cancer-related genes, indicating that the shared CTPSyn upregulation seen in either case is likely the cause of observed testicular overgrowth. This study presents the first instance of consequences of miRNA-asserted regulation upon CTPSyn in D. melanogaster, and further reaffirms the enzyme's close ties to germline cells overgrowth.
    Matched MeSH terms: Isoenzymes/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links