Displaying publications 21 - 40 of 76 in total

Abstract:
Sort:
  1. Ramadan NS, Wessjohann LA, Mocan A, Vodnar DC, El-Sayed NH, El-Toumy SA, et al.
    Molecules, 2020 May 22;25(10).
    PMID: 32455938 DOI: 10.3390/molecules25102423
    Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
    Matched MeSH terms: Metabolome*
  2. Akhtar MT, Samar M, Shami AA, Mumtaz MW, Mukhtar H, Tahir A, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361796 DOI: 10.3390/molecules26154643
    Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.
    Matched MeSH terms: Metabolomics/methods*; Metabolome*
  3. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
    Matched MeSH terms: Metabolome
  4. Razali MTA, Zainal ZA, Maulidiani M, Shaari K, Zamri Z, Mohd Idrus MZ, et al.
    Molecules, 2018 Aug 28;23(9).
    PMID: 30154302 DOI: 10.3390/molecules23092160
    The official standard for quality control of honey is currently based on physicochemical properties. However, this method is time-consuming, cost intensive, and does not lead to information on the originality of honey. This study aims to classify raw stingless bee honeys by bee species origins as a potential classifier using the NMR-LCMS-based metabolomics approach. Raw stingless bee honeys were analysed and classified by bee species origins using proton nuclear magnetic resonance (¹H-NMR) spectroscopy and an ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF MS) in combination with chemometrics tools. The honey samples were able to be classified into three different groups based on the bee species origins of Heterotrigona itama, Geniotrigona thoracica, and Tetrigona apicalis. d-Fructofuranose (H. itama honey), β-d-Glucose, d-Xylose, α-d-Glucose (G. thoracica honey), and l-Lactic acid, Acetic acid, l-Alanine (T. apicalis honey) ident d-Fructofuranose identified via ¹H-NMR data and the diagnostic ions of UHPLC-QTOF MS were characterized as the discriminant metabolites or putative chemical markers. It could be suggested that the quality of honey in terms of originality and purity can be rapidly determined using the classification technique by bee species origins via the ¹H-NMR- and UHPLC-QTOF MS-based metabolomics approach.
    Matched MeSH terms: Metabolome
  5. Che Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K
    Molecules, 2020 Nov 30;25(23).
    PMID: 33265992 DOI: 10.3390/molecules25235636
    Oil palm (Elaeis guineensis Jacq.) leaflets (OPLs) are one of the major agricultural by-products generated from the massive cultivation of Malaysian palm oil. This biomass is also reported to be of potential value based on its health-improving effects. By employing proton nuclear magnetic resonance (1H-NMR) spectroscopy combined with multivariate data analysis (MVDA), the metabolite profile of OPLs was characterized and correlated with their antioxidant and wound healing properties. Principal component analysis (PCA) classified four varieties of extracts, prepared using solvents ranging from polar to medium polarity, into three distinct clusters. Cumulatively, six flavonoids, eight organic acids, four carbohydrates, and an amine were identified from the solvent extracts. The more polar extracts, such as, the ethyl acetate-methanol, absolute methanol, and methanol-water, were richer in phytochemicals. Based on partial least square (PLS) analysis, the constituents in these extracts, such as (+)-catechin, (-)-epicatechin, orientin, isoorientin, vitexin, and isovitexin, were strongly correlated with the measured antioxidant activities, comprising ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and nitric oxide (NO) free radical scavenging activities, as well as with cell proliferation and migration activities. This study has provided crucial evidence on the importance of these natural antioxidant compounds on the wound healing properties of OPL.
    Matched MeSH terms: Metabolome/drug effects*
  6. Sulaiman F, Ahmad Azam A, Ahamad Bustamam MS, Fakurazi S, Abas F, Lee YX, et al.
    Molecules, 2020 Jul 15;25(14).
    PMID: 32679913 DOI: 10.3390/molecules25143235
    Watermelon, a widely commercialized fruit, is famous for its thirst-quenching property. The broad range of cultivars, which give rise to distinct color and taste, can be attributed to the differences in their chemical profile, especially that of the carotenoids and volatile compounds. In order to understand this distribution properly, water extracts of red and yellow watermelon pulps with predominantly polar metabolites were subjected to proton nuclear magnetic resonance (1H-NMR) analysis. Deuterium oxide (D2O) and deuterated chloroform (CDCl3) solvents were used to capture both polar and non-polar metabolites from the same sample. Thirty-six metabolites, of which six are carotenoids, were identified from the extracts. The clustering of the compounds was determined using unsupervised principal component analysis (PCA) and further grouping was achieved using supervised orthogonal partial least squares discriminant analysis (OPLS-DA). The presence of lycopene, β-carotene, lutein, and prolycopene in the red watermelon plays an important role in its differentiation from the yellow cultivar. A marked difference in metabolite distribution was observed between the NMR solvents used as evidenced from the PCA model. OPLS-DA and relative quantification of the metabolites, on the other hand, helped in uncovering the discriminating metabolites of the red and yellow watermelon cultivars from the same solvent system.
    Matched MeSH terms: Metabolome*
  7. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Metabolome
  8. Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS
    Microorganisms, 2020 Jun 16;8(6).
    PMID: 32560103 DOI: 10.3390/microorganisms8060906
    The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.
    Matched MeSH terms: Metabolome
  9. Zamani AI, Barig S, Ibrahim S, Mohd Yusof H, Ibrahim J, Low JYS, et al.
    Microb Cell Fact, 2020 Sep 09;19(1):179.
    PMID: 32907579 DOI: 10.1186/s12934-020-01434-w
    BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources.

    RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures.

    CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.

    Matched MeSH terms: Metabolome*
  10. Mahamad Maifiah MH, Velkov T, Creek DJ, Li J
    Methods Mol Biol, 2019;1946:321-328.
    PMID: 30798566 DOI: 10.1007/978-1-4939-9118-1_28
    Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains.
    Matched MeSH terms: Metabolome*
  11. Mediani A, Baharum SN
    Methods Mol Biol, 2024;2745:77-90.
    PMID: 38060180 DOI: 10.1007/978-1-0716-3577-3_5
    Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.
    Matched MeSH terms: Metabolome
  12. Wali S, Gupta R, Yu JJ, Mfuh A, Gao X, Guentzel MN, et al.
    Metabolomics, 2016 Apr;12(4).
    PMID: 27642272
    INTRODUCTION: Chlamydia trachomatis (Ct), is the leading cause of sexually transmitted infections worldwide. Host transcriptomic- or proteomic profiling studies have identified key molecules involved in establishment of Ct infection or the generation of anti Ct-immunity. However, the contribution of the host metabolome is not known.

    OBJECTIVES: The objective of this study was to determine the contribution of host metabolites in genital Ct infection.

    METHODS: We used high-performance liquid chromatography-mass spectrometry, and mapped lipid profiles in genital swabs obtained from female guinea pigs at days 3, 9, 15, 30 and 65 post Ct serovar D intravaginal infection.

    RESULTS: Across all time points assessed, 13 distinct lipid species including choline, ethanolamine and glycerol were detected. Amongst these metabolites, phosphatidylcholine (PC) was the predominant phospholipid detected from animals actively shedding bacteria i.e., at 3, 9, and 15 days post infection. However, at days 30 and 65 when the animals had cleared the infection, PC was observed to be decreased compared to previous time points. Mass spectrometry analyses of PC produced in guinea pigs (in vivo) and 104C1 guinea pig cell line (in vitro) revealed distinct PC species following Ct D infection. Amongst these, PC 16:0/18:1 was significantly upregulated following Ct D infection (p < 0.05, >twofold change) in vivo and in vitro infection models investigated in this report. Exogenous addition of PC 16:0/18:1 resulted in significant increase in Ct D in Hela 229 cells.

    CONCLUSION: This study demonstrates a role for host metabolite, PC 16:0/18:1 in regulating genital Ct infection in vivo and in vitro.

    Matched MeSH terms: Metabolome
  13. Loy, S.L., Hamid Jan, J.M., Sirajudeen, K.N.S.
    Malays J Nutr, 2013;19(3):383-399.
    MyJurnal
    Critical time windows exert profound influences on foetal physiological and metabolic profiles, which predispose an individual to later diseases via a 'programming' effect. Obesity has been suggested to be 'programmed' during early life. Foetuses and infants who experience adverse growth are subjected to a higher risk of obesity. However, the key factors that link adverse foetal growth and obesity risk remain obscure. To date, there is considerable evidence showing that the overall balance between free radical damage and the anti.oxidative process being challenged occurs throughout gestation. With the view that pregnancy is a pro-inflammatory state confronted with enhanced oxidative stress, which possesses similar characteristics to obesity (a chronic inflammatory state with increased oxidative stress), oxidative stress is thus biologically plausibly be proposed as the underlying mechanism between this causal-disease relationship. Oxidative stress could act as a programming cue for the development of obesity by inducing complex functional and metabolic deregulations as well as inducing the alteration of the adipogenesis process. Thereby, oxidative stress promotes adipose tissue deposition from early life onwards. The enhancement of fat accumulation further exaggerates oxidative derangement and perpetuates the cycle of adiposity. This review focuses on the oxidative stress pathways in prenatal and early postnatal stages, from the aspects of various endogenous and exogenous oxidative insults. Because oxidative stress is a modifiable pathway, this modifiability suggests a potential therapeutic target to fight the obesity epidemic by understanding the causal factors of oxidant induction.
    Matched MeSH terms: Metabolome
  14. Manah Chandra Changmai, Mohammed Faruque Reza, Zamzuri idris, Regunath Kandasamy, Kastury Gohain
    MyJurnal
    Introduction: Intracranial brain tumour like meningiomas and glioblastomas are most prevalent tumour. The metas- tasis to the brain is one of the major issues in the tumours of the central nervous system. The diagnosis of metastatic and primary brain tumour is incomprehensible with standard magnetic resonance imaging (MRI). The magnetic res- onance spectroscopy (MRS) is basically performed in standard clinical setting for diagnosing and tracking the brain tumour. Method: It is a retrospective study containing 53 patients with MRS. The patients with metastatic tumour (n=10), glioblastomas (n=8) and meningiomas (n=20) are included in the study. Single voxel technique is applied in the tumour core to determine the metabolites. The tumour N-acetyl aspartate (NAA), Choline (Cho), Creatine (Cr), Lactate, Alanine and lipids were analysed. The ratios of NAA/Cr, Cho/NAA and Cho/Cr were recorded and com- pared between the three tumours. The metabolites were detected between short echo time (TE) to long echo time (TE) during MRS. Results: There is a sharp fall of NAA peak in metastatic tumour. The resonance of creatine, lactate and alanine is higher in glioblastomas. A high lipid mean value of 3.13(0.17) is seen in metastatic tumour. The ROC curve shows a low NAA/Cr specificity of 46.7%, high sensitivity of 83.3% in Cho/NAA and Cho/Cr ratio. Conclusion: The metabolic profiles of metastatic brain tumour, glioblastomas and meningioma illustrate a divergence in their description that will assist in planning therapeutic and surgical intervention of these tumours.
    Matched MeSH terms: Metabolome
  15. Deng YF, Liu YY, Zhang YT, Wang Y, Liang JB, Tufarelli V, et al.
    J Sci Food Agric, 2017 Jun;97(8):2382-2391.
    PMID: 27664398 DOI: 10.1002/jsfa.8050
    BACKGROUND: The efficacy and role of inulin in the mitigation of enteric sulfur-containing odor gases hydrogen sulfide (H2 S) and methyl mercaptan (CH3 SH) in pigs were examined in this study. Twelve Duroc × Landrace × Yorkshire male finisher pigs (60.7 ± 1.9 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups, namely basal diet (control) and basal diet supplemented with 1% (w/w) inulin. At the end of the 45 day experiment, pigs were slaughtered and volatile fatty acid (VFA) concentration, sulfate radical (SO42- ) concentration, population of sulfate-reducing bacteria (SRB) and expression of methionine gamma-lyase (MGL) gene were determined in contents from the caecum, colon (two segments) and rectum. Metabonomic analysis was used to compare differences in biochemical composition, and the Illumina MiSeq procedure to investigate differences in bacterial components, in the different parts of the large intestine between inulin-supplemented and inulin-free (control) groups.

    RESULTS: Inulin decreased (P < 0.05) the average daily enteric H2 S and CH3 SH production by 12.4 and 12.1% respectively. The concentrations of acetate, propionate and butyrate in the large intestinal content were significantly increased (P < 0.05) with inulin treatment, whereas valerate concentration and MGL mRNA expression decreased (P < 0.05). The growth of Lactobacillus, Butyrivibrio, Pseudobutyrivibrio, Bifidobacterium and Clostridium butyricum was stimulated, while that of Desulfovibrio, the dominant SRB, was inhibited, and there was an accumulation of SO42- in the large intestinal content of the inulin-supplemented pigs, suggesting that inulin mitigates H2 S generation from the SO42- reduction pathway by reducing the growth of SRB.

    CONCLUSION: The results showed that inulin mitigates CH3 SH generation via three methionine degradation metabolic pathways and H2 S generation from two cysteine degradation metabolic pathways, thus resulting in increased synthesis of these two sulfur-containing amino acids in the pig large intestine. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Metabolome/drug effects*
  16. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, et al.
    J Proteomics, 2017 02 23;155:85-98.
    PMID: 28040509 DOI: 10.1016/j.jprot.2016.12.009
    Leishmania parasites multiply and develop in the gut of a sand fly vector in order to be transmitted to a vertebrate host. During this process they encounter and exploit various nutrients, including sugars, and amino and fatty acids. We have previously generated a mutant Leishmania line that is deficient in glucose transport and which displays some biologically important phenotypic changes such as reduced growth in axenic culture, reduced biosynthesis of hexose-containing virulence factors, increased sensitivity to oxidative stress, and dramatically reduced parasite burden in both insect vector and macrophage host cells. Here we report the generation and integration of proteomic and metabolomic approaches to identify molecular changes that may explain these phenotypes. Our data suggest changes in pathways of glycoconjugate production and redox homeostasis, which likely represent adaptations to the loss of sugar uptake capacity and explain the reduced virulence of this mutant in sand flies and mammals. Our data contribute to understanding the mechanisms of metabolic adaptation in Leishmania and illustrate the power of integrated proteomic and metabolomic approaches to relate biochemistry to phenotype.

    BIOLOGICAL SIGNIFICANCE: This paper reports the application of comparative proteomic and metabolomic approaches to reveal the molecular basis for important phenotypic changes Leishmania parasites that are deficient in glucose uptake. Leishmania cause a very significant disease burden across the world and there are few effective drugs available for control. This work shows that proteomics and metabolomics can produce complementary data that advance understanding of parasite metabolism and highlight potential new targets for chemotherapy.

    Matched MeSH terms: Metabolome/physiology*
  17. Carayol M, Leitzmann MF, Ferrari P, Zamora-Ros R, Achaintre D, Stepien M, et al.
    J Proteome Res, 2017 Sep 01;16(9):3137-3146.
    PMID: 28758405 DOI: 10.1021/acs.jproteome.6b01062
    Metabolomics is now widely used to characterize metabolic phenotypes associated with lifestyle risk factors such as obesity. The objective of the present study was to explore the associations of body mass index (BMI) with 145 metabolites measured in blood samples in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolites were measured in blood from 392 men from the Oxford (UK) cohort (EPIC-Oxford) and in 327 control subjects who were part of a nested case-control study on hepatobiliary carcinomas (EPIC-Hepatobiliary). Measured metabolites included amino acids, acylcarnitines, hexoses, biogenic amines, phosphatidylcholines, and sphingomyelins. Linear regression models controlled for potential confounders and multiple testing were run to evaluate the associations of metabolite concentrations with BMI. 40 and 45 individual metabolites showed significant differences according to BMI variations, in the EPIC-Oxford and EPIC-Hepatobiliary subcohorts, respectively. Twenty two individual metabolites (kynurenine, one sphingomyelin, glutamate and 19 phosphatidylcholines) were associated with BMI in both subcohorts. The present findings provide additional knowledge on blood metabolic signatures of BMI in European adults, which may help identify mechanisms mediating the relationship of BMI with obesity-related diseases.
    Matched MeSH terms: Metabolome*
  18. Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, et al.
    J Oral Pathol Med, 2017 Feb;46(2):82-88.
    PMID: 27237745 DOI: 10.1111/jop.12456
    There is now compelling evidence that the tumour stroma plays an important role in the pathogenesis of cancers of epithelial origin. The pre-eminent cell type of the stroma is carcinoma-associated fibroblasts. These cells demonstrate remarkable heterogeneity with activation and senescence being common stress responses. In this review, we summarise the part that these cells play in cancer, particularly oral cancer, and present evidence to show that activation and senescence reflect a unified programme of fibroblast differentiation. We report advances concerning the senescent fibroblast metabolome, mechanisms of gene regulation in these cells and ways in which epithelial cell adhesion is dysregulated by the fibroblast secretome. We suggest that the identification of fibroblast stress responses may be a valuable diagnostic tool in the determination of tumour behaviour and patient outcome. Further, the fact that stromal fibroblasts are a genetically stable diploid cell population suggests that they may be ideal therapeutic targets and early work in this context is encouraging.
    Matched MeSH terms: Metabolome
  19. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
    Matched MeSH terms: Metabolome
  20. Chen Y, Lim BK, Hashim OH
    J Hematol Oncol, 2009;2:37.
    PMID: 19709441 DOI: 10.1186/1756-8722-2-37
    The general enhanced expression of alpha1-antichymotrypsin (ACT), clusterin (CLU), alpha1-antitrypsin (AAT), haptoglobin beta-chain (HAP), and leucine rich glycoprotein (LRG) in the sera of patients with epithelial ovarian carcinoma (EOCa) was recently reported. In the present study, we compared the expression of the serum acute-phase proteins (APPs) in the patients according to their stages of cancer.
    Matched MeSH terms: Metabolome
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links