Displaying publications 21 - 40 of 47 in total

Abstract:
Sort:
  1. Ee, S.C., Bakar, J., Kharidah, M., Dzulkifly, M.H., Noranizan, A.
    MyJurnal
    The physico-chemical properties of spray-dried pitaya peel powders kept at accelerated (45 ± 2°C) and room temperature (28 ± 2°C) for 14 weeks and 6 months, respectively were evaluated. Changes in physico-chemical properties of the peel powder were used as indicators of stability, while changes of the betacyanin pigment retention was used to calculate the shelf-life of the powder. Storage temperatures significantly (p < 0.05) affected all the studied parameters and Hunter a value had the most significant change. The pigment retention of peel powder was approximately 87% at 45°C and 89% at room temperature storage. Degradation of betacyanin pigment in the powder followed the first order reaction kinetics with the half-life (t1/2) of approximately 76 weeks at 45°C and 38 months at 28°C. The spray-dried pitaya peel powder had a solubility of 87 to 92% and low in powder hygroscopicity. The final Aw of the powder did not exceed 0.6 for both storage temperatures.
    Matched MeSH terms: Physics
  2. Lee CAL
    Stud Hist Philos Sci, 2019 10;77:130-140.
    PMID: 31701877 DOI: 10.1016/j.shpsa.2017.10.002
    This essay considers the development of the nuclear science programme in Malaysia from a transnational perspective by examining the interactions between state agents and other external nuclear-knowledge/technology related actors and agents. Going beyond the model of knowledge diffusion that brings together concerns articulated in Harris's (2011) geographies of long distance knowledge and Reinhardt's (2011) role of the expert in knowledge transfer, the proposed three-phase model of knowledge transfer theorises the pathways undertaken by a late-blooming participant of modern science and technology as the latter moves from epistemic dependency to increasing independence despite the hurdles encountered, and the underdevelopment of many areas of its technoscientific economy. The model considers tensions stemming from the pressures of expediency for meeting national developmental goals on the one side, and the call to support the objectives of basic science on the other. The three phases of the model are epistemic transition, epistemic transplantation and localisation, and epistemic generation (ETTLG). As additional support for the proposed model, three arguments are proffered as deeper explanations of the epistemic goal by using Malaysia as a case study: knowledge transfer for political legitimization, knowledge transfer for countering agnotology, and knowledge transfer for social engineering and science diplomacy.
    Matched MeSH terms: Nuclear Physics*
  3. Jesudason, C.G.
    ASM Science Journal, 2007;1(1):7-18.
    MyJurnal
    Molecular dynamics reaction simulation showed that the rate constant is not constant over the concentration profile of reactants and products over a fixed temperature regime, and this variation is expressed in terms of the defined reactivity coefficients. The ratio of these coefficients for the forward and backward reactions were found to equal that of the activity coefficient ratio for the product and reactant species. A theory was developed to explain kinetics in general based on these observations. Several other theorems had first to be developed, most striking of all was the inference that the excess Helmholtz free energy was the thermodynamical function which had a direct relation to these activity factors than the Gibbs free energy. The theory is applied to a class of ionic reactions which could not be rationalized using the standard Bjørn-Bjerrum theory of ionic reactions.
    Matched MeSH terms: Physics
  4. Ng K, Pirabul R, Peralta A, Soejoko D
    Australas Phys Eng Sci Med, 1997 Mar;20(1):27-32.
    PMID: 9141310
    In recent years there has been a significant economic growth in South East Asia, along with it a concurrent development of medical physics. The status of four countries--Malaysia, Thailand, the Philippines and Indonesia are presented. Medical physicists in these countries have been experiencing the usual problems of lack of recognition, low salaries, and insufficient facilities for education and training opportunities. However the situation has improved recently through the initiative of local enthusiastic medical physicists who have started MS graduate programs in medical physics and begun organizing professional activities to raise the profile of medical physics. The tremendous support and catalytic roles of the American Association of Physicists in Medicine (AAPM) and international organizations such as International Organization for Medical Physics (IOMP), International Atomic Energy Agency (IAEA), World Health Organization (WHO), and International Center for Theoretical Physics (ICTP) have been instrumental in achieving progress. Contributions by these organizations include co-sponsorship of workshops and conferences, travel grants, medical physics libraries programs, and providing experts and educators. The demand for medical physicists is expected to rise in tandem with the increased emphasis on innovative technology for health care, stringent governmental regulation, and acceptance by the medical community of the important role of medical physicists.
    Matched MeSH terms: Biophysics/trends*; Physics/trends*
  5. Ng KH
    Australas Phys Eng Sci Med, 2008 Jun;31(2):85-9.
    PMID: 18697700
    From the time when Roentgen and other physicists made the discoveries which led to the development of radiology, radiotherapy and nuclear medicine, medical physicists have played a pivotal role in the development of new technologies that have revolutionized the way medicine is practiced today. Medical physicists have been transforming scientific advances in the research laboratories to improving the quality of life for patients; indeed innovations such as computed tomography, positron emission tomography and linear accelerators which collectively have improved the medical outcomes for millions of people. In order for radiation-delivery techniques to improve in targeting accuracy, optimal dose distribution and clinical outcome, convergence of imaging and therapy is the key. It is timely for these two specialties to work closer again. This can be achieved by means of cross-disciplinary research, common conferences and workshops, and collaboration in education and training for all. The current emphasis is on enhancing the specific skill development and competency of a medical physicist at the expense of their future roles and opportunities. This emphasis is largely driven by financial and political pressures for optimizing limited resources in health care. This has raised serious concern on the ability of the next generation of medical physicists to respond to new technologies. In addition in the background loom changes of tsunami proportion. The clearly defined boundaries between the different disciplines in medicine are increasingly blurred and those between diagnosis, therapy and management are also following suit. The use of radioactive particles to treat tumours using catheters, high-intensity focused ultrasound, electromagnetic wave ablation and photodynamic therapy are just some areas challenging the old paradigm. The uncertainty and turf battles will only explode further and medical physicists will not be spared. How would medical physicists fit into this changing scenario? We are in the midst of molecular revolution. Are we prepared to explore the newer technologies such as nanotechnology, drug discovery, pre-clinical imaging, optical imaging and biomedical informatics? How are our curricula adapting to the changing needs? We should remember the late Professor John Cameron who advocated imagination and creativity - these important attributes will make us still relevant in 2020 and beyond. To me the future is clear: "To achieve more, we should imagine together."
    Matched MeSH terms: Health Physics/education*; Health Physics/trends*
  6. Hizam NDA, Ung NM, Jong WL, Zin HM, Rahman ATA, Loh JPY, et al.
    Phys Med, 2019 Nov;67:34-39.
    PMID: 31655398 DOI: 10.1016/j.ejmp.2019.10.023
    PURPOSE: Intensity Modulated Radiotherapy (IMRT) has changed the practice of radiotherapy since its implementation in the 1990s. The purpose of this study is to review current practice of IMRT in Malaysia.

    METHODS: A survey on medical physics aspects of IMRT is conducted on radiotherapy departments across Malaysia to assess the usage, experience and QA in IMRT, which is done for the first time in this country. A set of questionnaires was designed and sent to the physicist in charge for their responses. The questionnaire consisted of four sections; (i) Experience and qualification of medical physicists, (ii) CT simulation techniques (iii) Treatment planning and treatment unit, (iv) IMRT process, delivery and QA procedure.

    RESULTS: A total of 26 responses were collected, representing 26 departments out of 33 radiotherapy departments in operation across Malaysia (79% response rate). Results showed that the medical physics aspects of IMRT practice in Malaysia are homogenous, with some variations in certain areas of practices. Thirteen centres (52%) performed measurement-based QA using 2D array detector and analysed using gamma index criteria of 3%, 3 mm with variation confidence range. In relation to the IMRT delivery, 44% of Malaysia's physicist takes more than 8 h to plan a head and neck case compared to the UK study possibly due to the lack of professional training.

    CONCLUSIONS: This survey provides a picture of medical physics aspects of IMRT in Malaysia where the results/data can be used by radiotherapy departments to benchmark their local policies and practice.

    Matched MeSH terms: Physics*
  7. Wong JHD, Zin HM, Pawanchek M, Ng KH
    Phys Med, 2019 Nov;67:40-49.
    PMID: 31669669 DOI: 10.1016/j.ejmp.2019.10.019
    OBJECTIVE: Medical physics in Malaysia is still considered a young profession. This workforce survey aims to understand the status, aspirations, motivation and experiences of medical physicists (MPs) in the country. A subsection of this survey also aims to understand the role of women.

    METHOD: A survey was carried out between April 20 and May 30, 2018 by a working group under the Medical Physics Division of the Malaysian Institute of Physics (IFM). The survey form was designed using Google Form and sent to various public and private institutions nationwide that employed MPs registered with IFM.

    RESULTS: A total of 106 responses (28% men and 72% women) were analysed. This represented 30% of the medical physics workforce. Majority of them had postgraduate degrees, but their clinical training is mostly obtained on the job with no certification. The number of low-ranking female MPs was disproportionately high. MPs worked long hours and achieving work-life balance (WLB) was a challenge. Factors that improved their WLB included working close to home, having a supportive manager and flexible working hours. Most MPs aspired to become professional and mentor younger compatriots, besides contributing to patient care and research. Gender discrimination was reportedly low.

    CONCLUSION: Medical physics in Malaysia is growing and has a strong representation of women. In future, they would probably take over the top management from their male counterparts, whose number had stagnated. A united effort was essential to set up a proper clinical training system to train clinically qualified MPs.

    Matched MeSH terms: Physics/statistics & numerical data*
  8. Santos JC, Goulart LF, Giansante L, Lin YH, Sirico ACA, Ng AH, et al.
    Phys Med, 2020 Aug;76:337-344.
    PMID: 32759035 DOI: 10.1016/j.ejmp.2020.07.023
    Mentoring aims to improve careers and create benefits for the participants' personal and professional lives. Mentoring can be an individual or a shared experience for a group, while the mentor's role remains the same in both models. Mentors should increase confidence, teach, inspire, and set examples, helping the mentees to mould their path, contributing to the pursuit of their personal and professional goals. This study aims to report on the experience of early-career medical physics professionals and postgraduate students participating in a global mentoring program and to assess the impact of this activity on their professional development. The objectives of this mentoring program are to develop leadership roles among young medical physicists and to provide guidance and support. An online questionnaire was administered to the mentee participants. The analysis of their responses is reported in this work and the current status of the programme was examined using a SWOT analysis. In general, the mentoring experience had a positive impact on the mentees. The mentors were found especially helpful in the decision-making situations and in other conflicts that may arise with career development. Additionally, the mentees felt that mentoring contributed to the development of leadership skills required for the job market and assist in personal development. This paper concludes that participation of young medical physicists in a mentoring group program is beneficial to their career and therefore should be encouraged.
    Matched MeSH terms: Physics
  9. Bidin, N.
    ASM Science Journal, 2008;2(2):179-182.
    MyJurnal
    The laser technology laboratory (LTL) of the Physics Department, University of Technology Malaysia was established in 1989 to support research and development activities. The laboratory provides activities for short- and long-term projects to serve final year undergraduate and post-graduate students in masters and PhD programmes.
    Matched MeSH terms: Physics
  10. Ong, Jian Fuh, Ithnin Abdul Jalil
    MyJurnal
    Neutrino is one of the nuclear particles that are necessary for the correct description of nuclear beta decay. The standard idea is that it is a massless neutral particle and its existence was postulated in order to save the conservation of ener gy principle. This particle was later detected experimentally and it is now known that neutrino has mass. The problem of astrophysical neutrino detection has produced a new phenomenon of neutrino oscillation where the three neutrino flav ours can oscillate between themselves. This paper studies the two component neutrino oscillation problem. We study the neutrino oscillation by using the Lagrangian formulation. In our study, we assume that the neutrinos are produced as n eutrino mass eigenstate and propagate in the vacuum in the superposition of two neutrino flavour state. The Lagrangian for neutrinos with their mass and the oscillation terms were obtained. By using the mass matrix in the Lagrangian, we formulate the time evolution operator in the interaction picture. The neutrino oscillation probability obtained by using the Lagrangian formulation have the same result with the one obtained by using quantum mechanics formulation. This study hopes to gain some deeper understanding into the behaviour of neutrino beyond the Standard Model.
    Matched MeSH terms: Physics
  11. Prasetyono TOH, Adhistana P
    Malays J Med Sci, 2019 Mar;26(2):66-76.
    PMID: 31447610 DOI: 10.21315/mjms2019.26.2.8
    Background: This study aimed to measure the least initial and maintenance forces of syringe and needle combinations to provide a reference for local anesthetic injection.

    Methods: An experimental study was conducted in our Physics Laboratory during September 2015. A series of syringes sized 1 mL, 3 mL, 5 mL, 10 mL and 20 mL were paired with the original needles, 27G, 27G spinal and 30G. Each combination was tested three times using a compression testing Instron 5940 Series to measure initial and maintenance forces. Statistical analysis was performed using One-way ANOVA.

    Results: The lowest initial force was shown by the combination of 1 mL syringe and 27G spinal needle. However, the 1 mL syringe showed no significant difference across the needles [F(3, 8) = 3.545; P < 0.068]. The original and 27G needle showed mean difference 0.28 (95%CI: -0.19, 0.75; P = 0.420). The lowest maintenance force was measured in the combination of 1 mL syringe and its original 26G needle. On the contrary, both the highest initial and maintenance forces were shown by the combination of 10 mL syringe and 30G needle.

    Conclusion: The 1 mL syringe with original 26G needle shows the best combination.

    Matched MeSH terms: Physics
  12. Andrea, B.K., Safinaz, M.K., Umi Kalthum, M.N., Mushawiahti, M.
    MyJurnal
    Traumatic injury to the eye can occur due to various causes, most of which are avoidable. Here we report three cases of intrastromal corneal foreign bodies (FB) which required surgical removal. Most corneal FBs are removed easily at the slit lamp, however, these cases required surgical intervention due to the mechanism of which the FB penetrated into the stroma. Although the mechanism of injury was similar, with all three cases occurring at high velocity, we observed that the entry and level of penetration differed in each case. In the first case, the corneal FB penetrated the cornea and was embedded in the anterior stroma, whereas in the second case, the FB was embedded in the posterior stroma, but with an intact endothelium. In the third case, the FB caused a full thickness, self-sealed laceration wound but remained embedded in the stroma. Through further evaluation, we noted that several factors contribute towards the severity of the injury, namely, anatomy of the cornea, area affected, shape, size, mass and velocity of the object. We speak in depth about the mechanism of injury and physics associated with these injuries and why the penetration differed in each case.
    Matched MeSH terms: Physics
  13. Aman S, Khan I, Ismail Z, Salleh MZ
    Neural Comput Appl, 2018;30(3):789-797.
    PMID: 30100679 DOI: 10.1007/s00521-016-2688-7
    Impacts of gold nanoparticles on MHD Poiseuille flow of nanofluid in a porous medium are studied. Mixed convection is induced due to external pressure gradient and buoyancy force. Additional effects of thermal radiation, chemical reaction and thermal diffusion are also considered. Gold nanoparticles of cylindrical shape are considered in kerosene oil taken as conventional base fluid. However, for comparison, four other types of nanoparticles (silver, copper, alumina and magnetite) are also considered. The problem is modeled in terms of partial differential equations with suitable boundary conditions and then computed by perturbation technique. Exact expressions for velocity and temperature are obtained. Graphical results are mapped in order to tackle the physics of the embedded parameters. This study mainly focuses on gold nanoparticles; however, for the sake of comparison, four other types of nanoparticles namely silver, copper, alumina and magnetite are analyzed for the heat transfer rate. The obtained results show that metals have higher rate of heat transfer than metal oxides. Gold nanoparticles have the highest rate of heat transfer followed by alumina and magnetite. Porosity and magnetic field have opposite effects on velocity.
    Matched MeSH terms: Physics
  14. Nurain Azmi, Sabirin Mustafa, Nur Hazirah Mohd Yunos, Wan Nor Azlin Wan Mohd Sakri, Muhammad Nazzim Abdul Halim, Amin Aadenan
    MyJurnal
    In this paper, a simple analysis yet a straight forward method of determining the Planck’s constant by
    evaluating the stopping potential of five different colors of light emitting diodes (LEDs) is presented.
    The study aimed to identify the Planck’s constant based on the relationship between the potential
    difference of LEDs to their respective frequencies under room temperature with low illumination of
    ambient light by applying a simple theoretical analysis. The experiment was performed by connecting
    the circuit in series connection and the voltage reading of LEDs were recorded and then presented in a
    graph of frequency, f versus stopping voltage, Vo. To determine the Planck’s constant, the best fit line
    was analyzed and the centroid was also identified in order to find the minimum and maximum errors
    due the gradient of the graph. From the analysis, results showed that the Planck constant value was
    (5.997 ± 1.520) × 10–34 J.s with approximately 10% of deviation from the actual value. This
    demonstrates that a simple analysis can be utilized to determine the Planck’s constant for the purpose
    of the laboratory teaching and learning at the undergraduate level and can be served as a starting point
    for the students to understand the concept of quantization of energy in Modern Physics more
    effectively. This is to further suggest that the Planck’s constant can be identified via a low-cost and
    unsophisticated experimental setup.
    Matched MeSH terms: Physics
  15. Abdullah MNS, Karpudewan M, Tanimale BM
    Trends Neurosci Educ, 2021 09;24:100159.
    PMID: 34412861 DOI: 10.1016/j.tine.2021.100159
    Advances in neuroscience studies have brought new insights into the development of Executive Functions (EFs) of the brain and its influence on understanding science concepts. This study was conducted to examine the relationships between three main components of EF: working memory, inhibition, set-shifting and understanding of Force concepts among adolescents. This study also investigated how gender mediates the relationships between the components of EF and understanding. Cambridge Neuropsychological Test Automated Battery was used to assess students' level of working memory, inhibition, and set-shifting. The Force Concept Test measured students understanding. Smart-PLS analysis was employed to examine the relationships between the three components of EF and understanding; and how gender mediates the relationships. The result reveals that working memory significantly relates to students' understanding of Force concepts in a positive direction. On the contrary, both set-shifting and inhibition exhibit non-significant relationships. The findings also demonstrate that gender does not significantly mediate the relationships. The findings are useful for Physics teachers to guide them through designing the curriculum and opting for an appropriate pedagogical strategy considering the role of the components of EF for teaching the lessons on Force.
    Matched MeSH terms: Physics
  16. Aziz SB, B Marif R, Brza MA, Hamsan MH, Kadir MFZ
    Polymers (Basel), 2019 Oct 16;11(10).
    PMID: 31623158 DOI: 10.3390/polym11101694
    In the current paper, ion transport parameters in poly (vinyl alcohol) (PVA) based solid polymer electrolyte were examined using Trukhan model successfully. The desired amount of lithium trifluoromethanesulfonate (LiCF3SO3) was dissolved in PVA host polymer to synthesis of solid polymer electrolytes (SPEs). Ion transport parameters such as mobility (μ), diffusion coefficient (D), and charge carrier number density (n) are investigated in detail using impedance spectroscopy. The data results from impedance plots illustrated a decrement of bulk resistance with an increase in temperature. Using electrical equivalent circuits (EEC), electrical impedance plots (ZivsZr) are fitted at various temperatures. The results of impedance study demonstrated that the resistivity of the sample decreases with increasing temperature. The decrease of resistance or impedance with increasing temperature distinguished from Bode plots. The dielectric constant and dielectric loss values increased with an increase in temperature. The loss tangent peaks shifted to higher frequency region and the intensity increased with an increase in temperature. In this contribution, ion transport as a complicated subject in polymer physics is studied. The conductivity versus reciprocal of temperature was found to obey Arrhenius behavior type. The ion transport mechanism is discussed from the tanδ spectra. The ion transport parameters at ambient temperature are found to be 9 × 10-8 cm2/s, 0.8 × 1017 cm-3, and 3 × 10-6 cm2/Vs for D, n, andμ respectively. All these parameters have shown increasing as temperature increased. The electric modulus parameters are studied in an attempt to understand the relaxation dynamics and to clarify the relaxation process and ion dynamics relationship.
    Matched MeSH terms: Physics
  17. Dey D, De D, Ahmadian A, Ghaemi F, Senu N
    Nanoscale Res Lett, 2021 Jan 29;16(1):20.
    PMID: 33512575 DOI: 10.1186/s11671-020-03467-x
    Doping is the key feature in semiconductor device fabrication. Many strategies have been discovered for controlling doping in the area of semiconductor physics during the past few decades. Electrical doping is a promising strategy that is used for effective tuning of the charge populations, electronic properties, and transmission properties. This doping process reduces the risk of high temperature, contamination of foreign particles. Significant experimental and theoretical efforts are demonstrated to study the characteristics of electrical doping during the past few decades. In this article, we first briefly review the historical roadmap of electrical doping. Secondly, we will discuss electrical doping at the molecular level. Thus, we will review some experimental works at the molecular level along with we review a variety of research works that are performed based on electrical doping. Then we figure out importance of electrical doping and its importance. Furthermore, we describe the methods of electrical doping. Finally, we conclude with a brief comparative study between electrical and conventional doping methods.
    Matched MeSH terms: Physics
  18. Nee CH, Yap SL, Tou TY, Chang HC, Yap SS
    Sci Rep, 2016 Sep 23;6:33966.
    PMID: 27659184 DOI: 10.1038/srep33966
    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.
    Matched MeSH terms: Physics
  19. Ivan Kok Seng Yap, Ammu Kutty Radhakrishnan, Chee Onn Leong
    MyJurnal
    Cancer research is an extremely broad topic covering many scientific disciplines including biology (e.g. biochemistry and signal transduction), chemistry (e.g. drug discover and development), physics (e.g. diagnostic devices) and even computer science (e.g. bioinformatics). Some would argue that
    cancer research will continue in much the same way as it is by adding further layers of complexity to the scientific knowledge that is already complex and almost beyond measure. But we anticipate that cancer research will undergo a dramatic paradigm shift due to the recent explosion of new discoveries in cancer biology. This review article focuses on the latest horizons in cancer research concerning cancer epigenetics, cancer stem cells, cancer immunology and cancer metabolism.
    Matched MeSH terms: Physics
  20. Kiani MJ, Harun FK, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M
    Nanoscale Res Lett, 2014;9(1):371.
    PMID: 25114659 DOI: 10.1186/1556-276X-9-371
    Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.
    Matched MeSH terms: Physics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links