Displaying publications 21 - 40 of 4601 in total

Abstract:
Sort:
  1. Husain I, Ahmad W, Ali A, Anwar L, Nuruddin SM, Ashraf K, et al.
    CNS Neurol Disord Drug Targets, 2021;20(7):613-624.
    PMID: 33530918 DOI: 10.2174/1871527320666210202121624
    A proteome is defined as a comprehensive protein set either of an organ or an organism at a given time and under specific physiological conditions. Accordingly, the study of the nervous system's proteomes is called neuroproteomics. In the neuroproteomics process, various pieces of the nervous system are "fragmented" to understand the dynamics of each given sub-proteome in a much better way. Functional proteomics addresses the organisation of proteins into complexes and the formation of organelles from these multiprotein complexes that control various physiological processes. Current functional studies of neuroproteomics mainly talk about the synapse structure and its organisation, the major building site of the neuronal communication channel. The proteomes of synaptic vesicle, presynaptic terminal, and postsynaptic density, have been examined by various proteomics techniques. The objectives of functional neuroproteomics are: to solve the proteome of single neurons or astrocytes grown in cell cultures or from the primary brain cells isolated from tissues under various conditions, to identify the set of proteins that characterize specific pathogenesis, or to determine the group of proteins making up postsynaptic or presynaptic densities. It is usual to solve a particular sub-proteome like the heat-shock response proteome or the proteome responding to inflammation. Post-translational protein modifications alter their functions and interactions. The techniques to detect synapse phosphoproteome are available. However, techniques for the analysis of ubiquitination and sumoylation are under development.
    Matched MeSH terms: Brain/physiology*; Neurons/physiology; Protein Processing, Post-Translational/physiology; Synapses/physiology; Proteome/physiology*
  2. Marconi G, Gopalai AA, Chauhan S
    Med Biol Eng Comput, 2023 May;61(5):1167-1182.
    PMID: 36689083 DOI: 10.1007/s11517-023-02778-2
    This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
    Matched MeSH terms: Ankle Joint/physiology; Biomechanical Phenomena/physiology; Gait/physiology; Walking/physiology; Muscle, Skeletal/physiology
  3. Mohammed Z, Dickinson CM
    Ophthalmic Physiol Opt, 2000 Nov;20(6):464-72.
    PMID: 11127126 DOI: 10.1111/j.1475-1313.2000.tb01124.x
    For the reading task, contrast reserve is defined as the ratio of the letter contrast of the printed letters, to the reader's contrast threshold. Acuity reserve is the ratio of the print size used for the reading task, to the reader's visual acuity. The effects of low contrast reserve on reading performance were investigated at various magnifications, ranging from 3x to 7.5x, with the field of view systematically controlled. Eye movements were recorded whilst normally sighted subjects read using the magnifiers. It was shown that with adequate contrast reserve, increasing the field of view improved the reading rate because of the resulting increase in forward saccade length. Conversely, reducing the contrast reserve slowed the reading rate by decreasing the length of forward saccades and increasing the mean fixation duration, suggesting that the perceptual span is reduced at low contrast reserve. This study also shows that when the contrast reserve is low, providing magnification higher than that required for letter recognition (that is, increasing the acuity reserve) will not improve the reading performance. Furthermore, even when the contrast reserve was high, reading rates were lower for the magnifications of 5x and higher, because increases in saccade length do not match those of the retinal image size at these magnifications.
    Matched MeSH terms: Eye Movements/physiology; Saccades/physiology; Visual Acuity/physiology*; Visual Fields/physiology*; Contrast Sensitivity/physiology
  4. Bray DP, Yaman K, Underhilll BA, Mitchell F, Carter V, Hamilton JG
    PLoS Negl Trop Dis, 2014 Dec;8(12):e3316.
    PMID: 25474027 DOI: 10.1371/journal.pntd.0003316
    BACKGROUND: The sand fly Phlebotomus argentipes is arguably the most important vector of leishmaniasis worldwide. As there is no vaccine against the parasites that cause leishmaniasis, disease prevention focuses on control of the insect vector. Understanding reproductive behaviour will be essential to controlling populations of P. argentipes, and developing new strategies for reducing leishmaniasis transmission. Through statistical analysis of male-female interactions, this study provides a detailed description of P. argentipes courtship, and behaviours critical to mating success are highlighted. The potential for a role of cuticular hydrocarbons in P. argentipes courtship is also investigated, by comparing chemicals extracted from the surface of male and female flies.

    PRINCIPAL FINDINGS: P. argentipes courtship shared many similarities with that of both Phlebotomus papatasi and the New World leishmaniasis vector Lutzomyia longipalpis. Male wing-flapping while approaching the female during courtship predicted mating success, and touching between males and females was a common and frequent occurrence. Both sexes were able to reject a potential partner. Significant differences were found in the profile of chemicals extracted from the surface of males and females. Results of GC analysis indicate that female extracts contained a number of peaks with relatively short retention times not present in males. Extracts from males had higher peaks for chemicals with relatively long retention times.

    CONCLUSIONS: The importance of male approach flapping suggests that production of audio signals through wing beating, or dispersal of sex pheromones, are important to mating in this species. Frequent touching as a means of communication, and the differences in the chemical profiles extracted from males and females, may also indicate a role for cuticular hydrocarbons in P. argentipes courtship. Comparing characteristics of successful and unsuccessful mates could aid in identifying the modality of signals involved in P. argentipes courtship, and their potential for use in developing new strategies for vector control.

    Matched MeSH terms: Insect Vectors/physiology*; Phlebotomus/physiology*
  5. Tan SS, Maul TH, Mennie NR
    PLoS One, 2013;8(5):e63042.
    PMID: 23696791 DOI: 10.1371/journal.pone.0063042
    Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly.
    Matched MeSH terms: Auditory Perception/physiology*; Visual Perception/physiology*
  6. Sharma JN
    Gen. Pharmacol., 1988;19(2):177-87.
    PMID: 3280399
    The evidence presented here suggests strongly that the kallikreins-kininogens-kinins-kininase II system has most significant role in regulation of systemic BP. This system is involved in mediation and modulation of renin-angiotensin-aldosterone, PGS and vasopressin in the regulation of sodium water balance, renal hemodynamic and BP. Therefore, reduction in the kinin-formation due to high production of kininase II, and lower formation of tissue kallikrein might result in an increased release of vasoconstrictor angiotensin II on one side, and on the other side much reduced production of PGE, vasodilator. These changes might lead to deranged vascular smooth muscle structures and cell membrane functions, retention of sodium and water, increased plasma volume, and renovascular constriction. These physiological defects might result in the development of essential hypertension (Fig. 4). Although, it is possible now to treat hypertensive conditions with tissue kallikrein and kininase II inhibitors. These discoveries have opened up new vistas to research on the pharmacological applications of kallikreins-kininogens-kinins-kininases in human diseases.
    Matched MeSH terms: Kallikreins/physiology*; Kinins/physiology*
  7. Singh G
    Med J Malaysia, 1977 Dec;32(2):152-6.
    PMID: 614483
    Matched MeSH terms: Neural Pathways/physiology; Nociceptors/physiology
  8. Ibtisham F, Awang-Junaidi AH, Honaramooz A
    Cell Tissue Res, 2020 May;380(2):393-414.
    PMID: 32337615 DOI: 10.1007/s00441-020-03212-x
    Spermatogonial stem cells (SSCs) are a rare group of cells in the testis that undergo self-renewal and complex sequences of differentiation to initiate and sustain spermatogenesis, to ensure the continuity of sperm production throughout adulthood. The difficulty of unequivocal identification of SSCs and complexity of replicating their differentiation properties in vitro have prompted the introduction of novel in vivo models such as germ cell transplantation (GCT), testis tissue xenografting (TTX), and testis cell aggregate implantation (TCAI). Owing to these unique animal models, our ability to study and manipulate SSCs has dramatically increased, which complements the availability of other advanced assisted reproductive technologies and various genome editing tools. These animal models can advance our knowledge of SSCs, testis tissue morphogenesis and development, germ-somatic cell interactions, and mechanisms that control spermatogenesis. Equally important, these animal models can have a wide range of experimental and potential clinical applications in fertility preservation of prepubertal cancer patients, and genetic conservation of endangered species. Moreover, these models allow experimentations that are otherwise difficult or impossible to be performed directly in the target species. Examples include proof-of-principle manipulation of germ cells for correction of genetic disorders or investigation of potential toxicants or new drugs on human testis formation or function. The primary focus of this review is to highlight the importance, methodology, current and potential future applications, as well as limitations of using these novel animal models in the study and manipulation of male germline stem cells.
    Matched MeSH terms: Spermatogenesis/physiology*; Adult Germline Stem Cells/physiology*
  9. Yap HH, Lee CY, Chong NL, Foo AE, Lim MP
    J Am Mosq Control Assoc, 1995 Mar;11(1):128-32.
    PMID: 7616179
    Several parameters on the oviposition site preference of Aedes albopictus were studied, including color, container type, salinity, and water type. Dark-colored glass jars, especially black, blue, and red ones were preferred over light-colored jars. The black-colored ovitrap with a paper strip performed better than other types of containers. Seasoned tap water had the highest egg count when compared with a saline water series. In addition, water that had previously been used for the culture of Ae. albopictus was the most preferred for oviposition. The significance of this study in conjunction with the present Aedes mosquito surveillance and monitoring program is discussed.
    Matched MeSH terms: Aedes/physiology*; Oviposition/physiology*
  10. Arunachalam M, Ramesh M, Thiagarajan V, Singla SK, Mudhol S, Muthukumar SP
    Curr Drug Targets, 2021;22(14):1688-1703.
    PMID: 33618645 DOI: 10.2174/1389450122666210222163528
    The neuron is high-energy utilizing tissue. The rate of neuronal cell respiration is higher than in other cells. Cellular respiration occurs with mitochondria. The healthy production and functions of mitochondria play a key role in the maintenance of healthy neurons. In pathological conditions such as neurodegenerative diseases, healthy mitochondria help to alleviate pathological events in neuronal cells. Conversely, mitochondrial dysfunction promotes the acceleration of the neurodegenerative process. Furthermore, glial-derived mitochondria contribute to multiple roles in the regulation of healthy neuron functions. It also supports releasing of the neurotransmitters; generation of the impulses, regulation of the membrane potential and molecular dynamics; controlling of the axonal transport; controlling of the mitochondrial fission and fusion functions in the peripheral as well as the central nervous system. Moreover, it plays a key role in the regeneration process of neuronal cells. Therefore, healthy mitochondria can provide a healthy environment for neuronal cell function and can treat neurodegenerative disorders. In this review, we explore the current view of healthy mitochondria and their role in healthy neuronal functions.
    Matched MeSH terms: Mitochondria/physiology*; Neurons/physiology*
  11. Abuajwa B, Hamlin M, Hafiz E, Razman R
    PeerJ, 2022;10:e14049.
    PMID: 36193438 DOI: 10.7717/peerj.14049
    BACKGROUND: The intensity of strength training exercise is generally regarded to be the most essential element in developing muscle strength and power. The exercise intensity of strength training is known as one-repetition maximum (1RM). Velocity-based training (VBT) has been proposed as a different approach for determining training intensity. VBT relies on the use of linear position transducers and inertial measurement units, providing real-time feedback to objectively adjust the exercise intensity based on an athlete's velocity zone.

    METHODS: This study investigated the effects of two different training interventions based on individualized load velocity profiles (LVP) on maximal bench press strength (i.e., 1RM), maximum throwing velocity (TV), and skeletal muscle mass (SKMM). Twenty-two university handball players were randomly assigned to Group 1 (low-movement speed training) or Group 2 (high-movement speed training). Group 1 exercised with a bar speed of 0.75-0.96 m/s, which corresponds to a resistance of approximately 60% 1RM, whereas Group 2 trained at 1.03-1.20 m/s, corresponding to a resistance of approximately 40% 1RM. Both groups exercised three times a week for five weeks, with strength and throwing tests performed at baseline and post-intervention.

    RESULTS: A two-way repeated measures ANOVA was applied, and the results showed the interaction between group and time was not statistically significant for SKMM (p = 0.537), 1RM (p = 0.883), or TV (p = 0.774). However, both groups significantly improved after the five weeks of training: SKMM (3.1% and 3.5%, p 

    Matched MeSH terms: Muscle, Skeletal/physiology; Muscle Strength/physiology
  12. Toyoda A, Gonçalves A, Maruhashi T, Malaivijitnond S, Matsuda I
    Sci Rep, 2024 May 13;14(1):10946.
    PMID: 38740882 DOI: 10.1038/s41598-024-61678-z
    Necrophilic behavior (attempted copulation with corpses) has been scarcely reported in non-human primates, especially in the wild. Here is the first case of necrophilic behavior observed in wild stump-tailed macaques in Thailand. Six groups of total N > 460 individuals have been identified and habituated. The corpse of an adult female was found and directly observed for 2 days and by camera trap for 3 days. The cause of death could not be identified, but no prominent physical injury was detected. Within 3 days of the observation, three different males attempted copulation with the corpse. Noteworthy for this observation was that not only males in the group of the dead female but also males from different groups interacted with the corpse. Taken together, these observations suggest that some cues emanating from the corpse coupled with a nonresistant/passive orientation may have triggered these responses in the males. Given that necrophiliac responses have been scarcely reported in non-human primates, our findings provide new insight into these behaviors and to comparative thanatology in general.
    Matched MeSH terms: Behavior, Animal/physiology; Copulation/physiology
  13. Nor Fatihah S, Muhd-Farouk H, Amin-Safwan A, Hafiz Mahsol H, Ikhwanuddin M
    Pak J Biol Sci, 2017;20(7):365-371.
    PMID: 29023069 DOI: 10.3923/pjbs.2017.365.371
    BACKGROUND AND OBJECTIVE: Mud spiny lobsters, Panulirus polyphagus (P. polyphagus) are one of the most important fisheries resources now-a-days due to quality that it's possessed. However, there is still lack of in-depth study about this species mainly on males testicular characteristics and sexual maturity size. Therefore, the present study was carried out to investigate the histological characteristics on the testes and sexual maturity sizes of mud spiny lobster, Panulirus polyphagus.

    MATERIALS AND METHODS: The testes were dissected out and fixed in 10% buffered formalin solution for 11 h, dehydrated in 70% alcohol and lastly placed in tissue processor for 18±1 h at 60°C. The tissues blocks were cut at the thickness of 4 μm on a rotary microtome. Stained tissues were taken under Advance Microscope (Nikon Eclipse 80i Nomarski DIC). Collected data were analyzed using Microsoft Excel 2013. Data were presented as mean±standard deviation. Statistical analyses were done using one-way ANOVA using SPSS (Version 22).

    RESULTS: These lobules of mature P. polyphagus were formed via different germinative lineage cells such as spermatogonia, spermatocytes, spermatids and spermatozoa. The histological characteristics of testes showed that the process of spermatogenesis went through the stages of four testes maturation which were spermatogonia I and II, spermatocytes I and II, spermatids and spermatozoa stages within different body weight of P. polyphagus. It was found that there were significant difference between body weight and carapace length to the testicular maturation stages (one-way ANOVA and p = 0.000).

    CONCLUSION: The results of this experiment indicated that males P. polyphagus have four stages of testes maturation and can be considered to have fully mature testes that ready for fertilization at 452 g body weight (BW) and 107 mm carapace length (CL) or more.

    Matched MeSH terms: Testis/physiology*; Palinuridae/physiology*
  14. Alotaibi S, Alotaibi MM, Alghamdi FS, Alshehri MA, Bamusa KM, Almalki ZF, et al.
    PeerJ, 2025;13:e18795.
    PMID: 39834791 DOI: 10.7717/peerj.18795
    BACKGROUND: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.

    METHODOLOGY: A systematic search was conducted across Web of Science, PubMed, and Google Scholar. Studies were selected based on strict inclusion and exclusion criteria: peer-reviewed; published between 2000 and 2024 (in English); focused on adults; investigated mind-reading (mental state decoding, brain-computer interfaces) or related processes; and employed various mind-reading techniques (pattern classification, multivariate analysis, decoding algorithms).

    RESULTS: This review highlights the critical role of fMRI in uncovering the neural mechanisms of mind-reading. Key brain regions involved include the superior temporal sulcus (STS), medial prefrontal cortex (mPFC), and temporoparietal junction (TPJ), all crucial for mentalizing (understanding others' mental states).

    CONCLUSIONS: This review emphasizes the importance of fMRI in advancing our knowledge of how the brain interprets and processes mental states. It offers valuable insights into the current state of mind-reading research in adults and paves the way for future exploration in this field.

    Matched MeSH terms: Temporal Lobe/physiology; Theory of Mind/physiology
  15. Sun M, Soh KG, Ma S, Wang X, Zhang J, Yaacob AB
    PLoS One, 2025;20(2):e0316846.
    PMID: 39983087 DOI: 10.1371/journal.pone.0316846
    BACKGROUND: Previous studies have reported on the impact of Speed, Agility, and Quickness (SAQ) training on the performance of soccer players. However, there is still controversy regarding the results. This systematic review and meta-analysis aim to accurately assess the effects of SAQ training on the performance of soccer players.

    METHODS: We conducted a comprehensive search on March 15, 2024, using Web of Science, PubMed, Scopus, and EBSCOhost. Eligibility criteria for selecting studies were established based on the PICOS framework: (i) Population-healthy soccer players; (ii) Intervention-SAQ training; (iii) Comparison condition (conventional training or traditional training); (iv) Outcome-physical performance (speed, agility, strength, etc.); (v) Study design-randomized controlled trials. The PEDro scale was employed to evaluate the methodological quality of each study, and a random-effects model was used for the meta-analysis.

    RESULTS: A total of 11 studies met the inclusion criteria for the systematic literature review. One study with low PEDro score was excluded, and one was excluded based on Cochrane bias risk assessment. Finally, 9 studies were included in the meta-analysis, comprising 498 soccer players. Overall, the results indicated a significant impact of SAQ training on physical qualities and dribbling speed among soccer players. Specifically, there was a moderate effect size for sprint performance (5m, 10m, 20m) (ES = 0.75; p < 0.01), change of direction ability (COD) (ES = 0.35; p < 0.001), power (vertical and horizontal jumps) (ES = 0.67; p < 0.01), while flexibility showed no significant impact (ES = 0.11; p > 0.05). Moreover, change-of-direction dribbling demonstrated a significant effect (ES = 0.58; p < 0.01).

    CONCLUSION: Overall, SAQ training effectively enhances speed, COD, explosiveness, and change-of-direction dribbling specific performance in adolescent soccer players, particularly in sprinting. However, it does not have an advantage in improving flexibility. Further high-quality studies encompassing a broader range of exercises are needed to fully determine the effectiveness of SAQ training in improving other physical qualities and technical skills of soccer players, as well as ultimately enhancing match performance.

    Matched MeSH terms: Running/physiology; Muscle Strength/physiology
  16. Cysique LA, Levin J, Howard C, Taylor J, Rule J, Costello J, et al.
    Lancet HIV, 2025 Jan;12(1):e71-e80.
    PMID: 39615509 DOI: 10.1016/S2352-3018(24)00248-0
    Prevalence and incidence of HIV among people aged 50 years and older continue to rise worldwide, generating increasing awareness among care providers, scientists, and the HIV community about the importance of brain health in older adults with HIV. Many age-related factors that adversely affect brain health can occur earlier and more often among people with HIV, including epigenetic ageing, chronic medical conditions (eg, cardiovascular disease), and age-related syndromes (eg, frailty). Extensive dialogue between HIV community leaders, health-care providers, and scientists has led to the development of a multidimensional response strategy to protect and enhance brain health in people ageing with HIV that spans across public health, clinical spaces, and research spaces. This response strategy was informed by integrated ageing care frameworks and is centred on prevention, early detection, and management of brain health issues associated with HIV (eg, neurocognitive disorders), with specific considerations for low-resource or middle-resource countries. A collaborative, international, and data-informed update of the diagnostic criteria for HIV-associated neurocognitive disorders is a cornerstone of the proposed response strategy. The proposed response strategy includes a dynamic, international, online knowledge hub that will provide a crucial community resource for emerging evidence on the brain health of people ageing with HIV.
    Matched MeSH terms: Cognitive Aging/physiology; Aging/physiology
  17. Bin Ahmad Nadzri AA, Ahmad SA, Marhaban MH, Jaafar H
    Australas Phys Eng Sci Med, 2014 Mar;37(1):133-7.
    PMID: 24443218 DOI: 10.1007/s13246-014-0243-3
    Surface electromyography (SEMG) signals can provide important information for prosthetic hand control application. In this study, time domain (TD) features were used in extracting information from the SEMG signal in determining hand motions and stages of contraction (start, middle and end). Data were collected from ten healthy subjects. Two muscles, which are flexor carpi ulnaris (FCU) and extensor carpi radialis (ECR) were assessed during three hand motions of wrist flexion (WF), wrist extension (WE) and co-contraction (CC). The SEMG signals were first segmented into 132.5 ms windows, full wave rectified and filtered with a 6 Hz low pass Butterworth filter. Five TD features of mean absolute value, variance, root mean square, integrated absolute value and waveform length were used for feature extraction and subsequently patterns were determined. It is concluded that the TD features that were used are able to differentiate hand motions. However, for the stages of contraction determination, although there were patterns observed, it is determined that the stages could not be properly be differentiated due to the variability of signal strengths between subjects.
    Matched MeSH terms: Hand/physiology*; Muscle Contraction/physiology*; Wrist/physiology*
  18. Rumpf MC, Cronin JB, Mohamad IN, Mohamad S, Oliver JL, Hughes MG
    Phys Ther Sport, 2014 Feb;15(1):53-7.
    PMID: 23850007 DOI: 10.1016/j.ptsp.2013.03.001
    A possible injury risk factor is limb asymmetry, which may differ across maturation given the adult growth spurt. The aim of this study is to quantify the magnitude of asymmetry in a number of kinetic variables during a running task in male youth of different maturity status.
    Matched MeSH terms: Functional Laterality/physiology*; Leg/physiology*; Running/physiology*
  19. Takano KT, Repin R, Mohamed MB, Toda MJ
    Plant Biol (Stuttg), 2012 Jul;14(4):555-64.
    PMID: 22289145 DOI: 10.1111/j.1438-8677.2011.00541.x
    Two taxonomically undescribed Colocasiomyia species were discovered from inflorescences of Alocasia macrorrhizos in Kota Kinabalu City, Sabah, Borneo, Malaysia. The aims of this study were to investigate the reproductive ecology of the flies and the plant, ascertain the importance of the flies as pollinators and examine the intimate association between flowering events and life history of the flies. We conducted sampling, observations and field pollination experiments. The flies were attracted by the odour of female-phase inflorescences in the early morning on the first day of anthesis. They fed, mated and oviposited in the inflorescences for 1 day. On the second day, the flies, covered with pollen grains, left the male-phase inflorescences for the next female-phase inflorescences. The immature forms of both fly species hatched, developed and pupated within the infructescences without damaging the fruits, and developed adults emerged when the mature infructescences dehisced. The flowering events and fly behaviours were well synchronized. In field pollination experiments, inflorescences bagged with a fine mesh (insect exclusion) produced almost no fruits, whereas those bagged with a coarse mesh (bee exclusion) produced as many fruits as the open-pollinated controls. These results indicate that these flies are the most efficient and specialised pollinators for their host, A. macrorrhizos. These flies, in return, depend on A. macrorrhizos for food and habitat through most of their life cycle. This study provides a deeper insight into the less recognised, highly intimate pollination mutualism between Araceae plants and Colocasiomyia flies.
    Matched MeSH terms: Drosophilidae/physiology*; Alocasia/physiology*; Inflorescence/physiology
  20. Leonard Joseph H, Roslizawati N, Safrusahar MY, Efri NM, Das S, Baharudin O, et al.
    Clin Ter, 2009;160(5):403-7.
    PMID: 19997687
    Sepak Takraw is a sport which actively involves the lower limb. A cross sectional study was performed to investigate the lower limb kinetics (ground reaction force, flight time and contact time) involved during the vertical jumping and landing task between the early pubertal and late pubertal stages in National level Sepak Takraw athletes in Malaysia. Twenty athletes (8 pre pubertal and 12 late pubertal) with no previous history of any physical injuries were taken for the study. The kinetics data of the vertical jump task was calculated using a force platform 3-AMTI Biomechanics Force Platform. The Silicon ProCoach (Chart 5 software) was used to collect the ground reaction force signals, flight time and contact time. The results showed a non-significant decrease in peak ground reaction force in the post pubertal group as compared to the pre pubertal group (t(18)=0.659, p=0.518,CI(95)(-2.54, 4.86). Comparison of flight time between the two age groups showed a significant increase in the post pubertal group with mean and SD (0.7773 + or - 0.03) as compared to the pre pubertal group mean and SD (0.7296 + or - 0.05), which was statistically considered significant (p<0.05) (t(18)=-2.401, p<0.05,CI(95)(-0.089, -0.005). The findings from this study demonstrated that the flight time of the vertical jump task differed between the pre and post pubertal athletes with the post pubertal group having an improved ability in maintaining longer duration of flight phase.
    Matched MeSH terms: Leg/physiology*; Puberty/physiology*; Sports/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links