Displaying publications 21 - 40 of 68 in total

Abstract:
Sort:
  1. Zhu F, Storey S, Ashaari MM, Clipson N, Doyle E
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5404-5414.
    PMID: 28025788 DOI: 10.1007/s11356-016-8251-3
    Benzo(a)pyrene degradation was compared in soil that was either composted, incubated at a constant temperature of 22 °C, or incubated under a temperature regime typical of a composting process. After 84 days, significantly more (61%) benzo(a)pyrene was removed from composted soil compared to soils incubated at a constant temperature (29%) or at composting temperatures (46%). Molecular fingerprinting approaches indicated that in composted soils, bacterial community changes were driven by both temperature and organic amendment, while fungal community changes were primarily driven by temperature. Next-generation sequencing data revealed that the bacterial community in composted soil was dominated by Actinobacteria (order Actinomycetales), Firmicutes (class Bacilli), and Proteobacteria (classes Gammaproteobacteria and Alphaproteobacteria), regardless of whether benzo(a)pyrene was present or not. The relative abundance of unclassified Actinomycetales (Actinobacteria) was significantly higher in composted soil when degradation was occurring, indicating a potential role for these organisms in benzo(a)pyrene metabolism. This study provides baseline data for employing straw-based composting strategies for the removal of high molecular weight PAHs from soil and contributes to the knowledge of how microbial communities respond to incubation conditions and pollutant degradation.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic
  2. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  3. Masood N, Zakaria MP, Halimoon N, Aris AZ, Magam SM, Kannan N, et al.
    Mar Pollut Bull, 2016 Jan 15;102(1):160-75.
    PMID: 26616745 DOI: 10.1016/j.marpolbul.2015.11.032
    Polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs) were used as anthropogenic markers of organic chemical pollution of sediments in the Selangor River, Peninsular Malaysia. This study was conducted on sediment samples from the beginning of the estuary to the upstream river during dry and rainy seasons. The concentrations of ƩPAHs and ƩLABs ranged from 203 to 964 and from 23 to 113 ng g(-1) dry weight (dw), respectively. In particular, the Selangor River was found to have higher sedimentary levels of PAHs and LABs during the wet season than in the dry season, which was primarily associated with the intensity of domestic wastewater discharge and high amounts of urban runoff washing the pollutants from the surrounding area. The concentrations of the toxic contaminants were determined according to the Sediment Quality Guidelines (SQGs). The PAH levels in the Selangor River did not exceed the SQGs, for example, the effects range low (ERL) value, indicating that they cannot exert adverse biological effects.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/chemistry
  4. Hamidi EN, Hajeb P, Selamat J, Abdull Razis AF
    Asian Pac J Cancer Prev, 2016;17(1):15-23.
    PMID: 26838201
    Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/adverse effects*
  5. Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH
    Mar Pollut Bull, 2015 Dec 15;101(1):69-84.
    PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022
    Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis
  6. Biswas B, Sarkar B, Rusmin R, Naidu R
    Environ Int, 2015 Dec;85:168-81.
    PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017
    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/metabolism
  7. Anezaki K, Kannan N, Nakano T
    Environ Sci Pollut Res Int, 2015 Oct;22(19):14478-88.
    PMID: 24809497 DOI: 10.1007/s11356-014-2985-6
    This study reports the concentrations and congener partners of polychlorinated biphenyls (PCBs) in commercially available paints. Polycyclic-type pigments containing dioxazine violet (pigment violet (PV) 23, PV37) and diketopyrrolopyrrole (PR254, PR255) were found to contain PCB-56, PCB-77, PCB-40, PCB-5, and PCB-12, and PCB-6, PCB-13, and PCB-15, respectively, as major congeners. Dioxazine violet is contaminated with by-products during synthesis from o-dichlorobenzene, which is used as a solvent during synthesis, and diketopyrrolopyrrole is contaminated with by-products during synthesis from p-chlorobenzonitrile. The concentration of PCBs in paint containing PV23 or PV37 was 0.050-29 mg/kg, and toxic equivalency (TEQ) values ranged 1.1-160 pg-TEQ/g. The concentration of PCBs in paint containing PR254 or PR255 was 0.0019-2.4 mg/kg. Naphthol AS is an azo-type pigment, and PCB-52 was detected in paint containing pigment red (PR) 9 with 2,5-dichloroaniline as its source. PCB-146, PCB-149, and PCB-153 were identified from paint containing PR112 produced from 2,4,5-trichloroaniline, as major congeners. These congeners have chlorine positions similar to aniline, indicating that these congeners are by-products obtained during the synthesis of pigments. The concentrations of PCBs in paints containing PR9 and PR112 were 0.0042-0.43 and 0.0044-3.8 mg/kg, respectively. The corresponding TEQ for PR112 was 0.0039-8.6 pg-TEQ/g.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/chemistry
  8. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FM, Mustafa S
    Environ Sci Pollut Res Int, 2015 Jun;22(12):9424-37.
    PMID: 25604562 DOI: 10.1007/s11356-015-4093-7
    In this study, the distributions and sources of sediment-associated polycyclic aromatic hydrocarbons (PAHs) and hopanes in the Malaysian rivers and estuaries were evaluated. The concentrations of 16 USEPA PAHs varied from 225.5 to 293.9 (Perlis River), 195.2 to 481.2 (Kedah River), 791.2 to 1995.4 (Merbok River), 231.2 to 426.7 (Perak River), and 3803.2 to 7442.7 ng g(-1) (Klang River) dry weight. PAHs can be classified as moderate in the Perlis, Kedah, and Perak Rivers, moderate to high in the Merbok River, and high to very high in the Klang River. The comparison of PAHs with sediment quality guidelines (SQGs) indicates that occasionally adverse biological effects may occur from total PAHs, low molecular weight (LMW), and high molecular weight (HMW) PAHs at stations 1, 2, and 3 of the Klang River and from total PAHs at station 2 of the Merbok River. The diagnostic ratios of individual PAHs indicate both petrogenic and pyrogenic origin PAHs with significant dominance of pyrogenic sources in the study areas. The results suggest that Malaysian sediments had hopane ratios (C29/C30) similar to MECO suggesting MECO as a major source of the petroleum hydrocarbons found in the sediments, which is consistent with results reported in previous studies. These findings demonstrate that effective and improved environmental regulations in Malaysia have shifted the source of petroleum hydrocarbons from petrogenic to pyrogenic origin.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/chemistry*
  9. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/metabolism*; Polycyclic Hydrocarbons, Aromatic/chemistry*
  10. Zhao X, Kim SK, Zhu W, Kannan N, Li D
    Chemosphere, 2015 Jan;119:289-294.
    PMID: 25036943 DOI: 10.1016/j.chemosphere.2014.06.005
    The Changbai (also known as "Baekdu") Mountain, on the border between China and North Korea, is the highest mountain (2750 m) in northeastern China. Recently, this mountain region has experienced a dramatic increase in air pollution, not only because of increasing volumes of tourism-derived traffic but also because of the long-range transport of polluted westerly winds passing through major industrial and urban cities in the eastern region of China. To assess the relative importance of the two sources of pollution, 16 polycyclic aromatic hydrocarbons (PAHs) as model substances were determined in the mountain soil. A total of 32 soil samples were collected from different sides of the mountain at different latitudes between July and August of 2009. The ∑PAH concentrations were within the range 38.5-190.1 ng g(-1) on the northern side, 117.7-443.6 ng g(-1) on the southern side, and 75.3-437.3 ng g(-1) on the western side. A progressive increase in the level of ∑PAHs with latitude was observed on the southern and western sides that face the westerly wind with abundant precipitation. However, a similar concentration gradient was not observed on the northern side that receives less rain and is on the leeward direction of the wind. The high-molecular-weight PAH compounds were predominant in the soils on the southern and western sides, while low-molecular-weight PAHs dominated the northern side soils. These findings show that the distribution of PAHs in the mountain soil is strongly influenced by the atmospheric long-range transport and cold trapping.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*
  11. Yap CL, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2015 Jan;22(1):329-42.
    PMID: 25065478 DOI: 10.1007/s11356-014-3199-7
    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis; Polycyclic Hydrocarbons, Aromatic/chemistry*
  12. Abdull Razis AF, Konsue N, Ioannides C
    Asian Pac J Cancer Prev, 2015;16(7):2679-83.
    PMID: 25854346
    BACKGROUND: Phenethyl isothiocyanate (PEITC), the most comprehensively studied aromatic isothiocyanate, has been shown to act as an anti-cancer agent mainly through modulation of biotransformation enzymes responsible for metabolizing carcinogens in the human body. Humans are often exposed to carcinogenic factors, some of which through the diet, such as polycyclic aromatic hydrocarbon benzo[a]pyrene via the consumption of over-cooked meats. Inhibition of the enzymes responsible for the bioactivation of this carcinogen, for example CYP1A1, the major enzyme required for polycyclic aromatic hydrocarbons (PAHs) bioactivation, is recognized as a chemoprevention strategy.

    OBJECTIVE: To evaluate the inhibitory effects of PEITC against benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA and apoprotein levels.

    MATERIALS AND METHODS: Precision cut rat liver slices were treated with benzo[a]pyrene at 1 and 5 μM in the presence of PEITC (1-25 μM) for 24 hours, followed by determination of CYP1A1 mRNA and apoprotein levels using quantitative polymerase chain reaction and immunoblotting.

    RESULTS: Findings revealed that PEITC inhibited benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA in a dose-dependent manner as well as the apoprotein levels of CYP1A.

    CONCLUSIONS: It was demonstrated that PEITC can directly inhibit the bioactivation of benzo[a]pyrene, indicating chemopreventive potential.

    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/metabolism
  13. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FF, Mustafa S, Vaezzadeh V, et al.
    Mar Pollut Bull, 2014 Nov 15;88(1-2):366-72.
    PMID: 25173594 DOI: 10.1016/j.marpolbul.2014.08.014
    In this study, the surface sediments of the Malacca and Prai Rivers were analyzed to identify the distributions, and sources of Polycyclic Aromatic Hydrocarbons (PAHs). The total PAH concentrations varied from 716 to 1210 and 1102 to 7938 ng g(-1)dw in the sediments of the Malacca and Prai Rivers, respectively. The PAH concentrations can be classified as moderate and high level of pollution in the sediments of the Malacca and Prai Rivers, respectively. The comparison of PAHs with the Sediment Quality Guidelines (SQGs) indicates that the PAHs in the sediments of the Malacca and Prai Rivers may have the potential to cause adverse toxicity effects on the sampled ecosystems. The diagnostic ratios of individual PAHs indicate both petrogenic- and pyrogenic-origin PAHs with dominance of pyrogenic source in both rivers. These findings demonstrate that the environmental regulations in Malaysia have effectively reduced the input of petrogenic petroleum hydrocarbons into rivers.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/chemistry
  14. Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Rahman MA, Safari O, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):268-79.
    PMID: 24855978 DOI: 10.1016/j.marpolbul.2014.05.004
    The concentration of carcinogenic poly aromatic hydrocarbons (c-PAHs) present in water and sediment of Klang Strait as well as in the edible tissue of blood cockle (Anadara granosa) was investigated. The human health risk of c-PAHs was assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). The cancer risks of c-PAHs to human are expected to occur through the consumption of blood cockles or via gastrointestinal exposure to polluted sediments and water in Kalng Strait. The non-carcinogenic risks that are associated with multiple pathways based on ingestion rate and contact rates with water were higher than the US EPA safe level at almost all stations, but the non-carcinogenic risks for eating blood cockle was below the level of US EPA concern. A high correlation between concentrations of c-PAHs in different matrices showed that the bioaccumulation of c-PAHs by blood cockles could be regarded as a potential health hazard for the consumers.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/toxicity*; Polycyclic Hydrocarbons, Aromatic/chemistry
  15. Lau EV, Gan S, Ng HK, Poh PE
    Environ Pollut, 2014 Jan;184:640-9.
    PMID: 24100092 DOI: 10.1016/j.envpol.2013.09.010
    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis; Polycyclic Hydrocarbons, Aromatic/chemistry*
  16. Tavakoly Sany SB, Hashim R, Salleh A, Rezayi M, Mehdinia A, Safari O
    PLoS One, 2014;9(4):e94907.
    PMID: 24747349 DOI: 10.1371/journal.pone.0094907
    Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis*; Polycyclic Hydrocarbons, Aromatic/toxicity
  17. Fakhru'l-Razi A, Peyda M, Ab Karim Ghani WA, Abidin ZZ, Zakaria MP, Moeini H
    Biotechnol Prog, 2014 Jul-Aug;30(4):797-805.
    PMID: 24692323 DOI: 10.1002/btpr.1911
    In this work, crude oil biodegradation has been optimized in a solid-liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d-optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model-predicted and experimental results. When applying the optimum parameters, gas chromatography-mass spectrometry showed a significant reduction in n-alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/chemistry*
  18. Hadibarata T, Kristanti RA, Hamdzah M
    Biotechnol Appl Biochem, 2014 Mar-Apr;61(2):126-33.
    PMID: 24033877 DOI: 10.1002/bab.1155
    Major concern about the presence of fluoranthene, which consists of four fused benzene rings, in the environment has been raised in the past few years due to its toxic, mutagenic, and persistent organic pollutant properties. In this study, we investigated the removal of fluoranthene under static and agitated conditions. About 89% fluoranthene was removed within 30 days under the agitated condition, whereas under the static condition, only 54% fluoranthene was removed. We further investigated the behavior and mechanism of fluoranthene biosorption and biotransformation by Pleurotus eryngii F032 to accelerate the elimination of fluoranthene. The optimum conditions for the elimination of fluoranthene by P. eryngii F032 included a temperature of 35 °C, pH 3, 0.2% inoculum concentration, and a C/N ratio of 16. Under these conditions at the initial fluoranthene concentration of 10 mg/L, more than 95% of fluoranthene was successfully removed within 30 days. Of those factors influencing the biodegradation of fluoranthene, salinity, glucose, and rhamnolipid content were of the greatest importance. Degradation metabolites identified using gas chromatography-mass spectrometry were 1-naphthalenecarboxylic acid and salicylic acid, suggesting possible metabolic pathways. Finally, it can be presumed that the major mechanism of fluoranthene elimination by white-rot fungi is to mineralize polycyclic aromatic hydrocarbons via biotransformation enzymes like laccase.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/metabolism*; Polycyclic Hydrocarbons, Aromatic/chemistry
  19. Gan S, Yap CL, Ng HK, Venny
    J Hazard Mater, 2013 Nov 15;262:691-700.
    PMID: 24121640 DOI: 10.1016/j.jhazmat.2013.09.023
    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/analysis; Polycyclic Hydrocarbons, Aromatic/chemistry*
  20. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2013 Aug 9;1302:14-9.
    PMID: 23809804 DOI: 10.1016/j.chroma.2013.06.010
    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.
    Matched MeSH terms: Polycyclic Hydrocarbons, Aromatic/isolation & purification; Polycyclic Hydrocarbons, Aromatic/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links