Materials and Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.
Results: 2D QSAR models had q2: 0.950 and pred_r2: 0.877 and 3D QSAR models had q2: 0.899 and pred_r2: 0.957. These results showed that the models werere predictive.
Conclusion: Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.
OBJECTIVES: To identify the important pharmacophoric features and correlate 3D chemical structure of benzothiazinimines with their anti-HIV potential using 2D, 3D-QSAR and pharmacophore modeling studies.
METHODS: QSAR and pharmacophore mapping studies have been used to relate structural features. 2D QSAR and 3D QSAR studies were performed using partial least square and k-nearest neighbor methodology, coupled with various feature selection methods, viz. stepwise, genetic algorithm, and simulated annealing, to derive QSAR models which were further validated for statistical significance.
RESULTS: The physicochemical descriptor XAHydrophilicArea and SsOHE-index, and alignmentindependent descriptor T_C_Cl_6 showed significant correlation with the anti-HIV activity of benzothiazinimines in 2D QSAR. 3D QSAR results showed the significant effect of electrostatic and steric field descriptors in the anti-HIV potential of benzothiazinimines. The generated pharmacophore hypothesis demonstrated the importance of aromaticity and hydrogen bond acceptors.
CONCLUSION: The significant models obtained in this study suggested that these techniques could be used as a guidance for designing new benzothiazinimines with enhanced anti-HIV potential.
OBJECTIVE: The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AChE inhibition linking to the potential treatment of Alzheimer's disease.
METHODOLOGY: Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and quantitative structure-activity relationship (QSAR) were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman's method.
RESULTS: In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AChE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative compound 20 was the best scorer, i.e. -31.6392 and IC50 was predicted as 6.025 nM.
CONCLUSION: Results indicated that flavonoids could be efficient inhibitors of AChE and thus, could be useful in the management of Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.