Displaying publications 21 - 40 of 545 in total

Abstract:
Sort:
  1. Takafumi H, Kamii T, Murai T, Yoshida R, Sato A, Tachiki Y, et al.
    PeerJ, 2017;5:e3869.
    PMID: 29038752 DOI: 10.7717/peerj.3869
    The sika deer (Cervus nippon yesoensis) population in the Ramsar-listed Kushiro Wetland has increased in recent years, and the Ministry of the Environment of Japan has decided to take measures to reduce the impact of deer on the ecosystem. However, seasonal movement patterns of the deer (i.e., when and where the deer inhabit the wetland) remain unclear. We examined the seasonal movement patterns of sika deer in the Kushiro Wetland from 2013 to 2015 by analyzing GPS location data for 28 hinds captured at three sites in the wetland. Seasonal movement patterns were quantitatively classified as seasonal migration, mixed, dispersal, nomadic, resident, or atypical, and the degree of wetland utilization for each individual was estimated. The area of overlap for each individual among intra-capture sites and inter-capture sites was calculated for the entire year and for each season. Our results showed that the movement patterns of these deer were classified not only as resident but also as seasonal migration, dispersal, and atypical. Approximately one-third of the individuals moved into and out of the wetland during the year as either seasonal migrants or individuals with atypical movement. Some of the individuals migrated to farmland areas outside the wetland (the farthest being 69.9 km away). Half of the individuals inhabited the wetland all or most of the year, i.e., 81-100% of their annual home range was within the wetland area. Even among individuals captured at the same site, different seasonal movement patterns were identified. The overlap areas of the home ranges of individuals from the same capture sites were larger than those for individuals from different capture sites (e.g., mean of annual home range overlap with intra-capture sites: 47.7% vs. inter-sites: 1.3%). To achieve more effective ecosystem management including deer management in the wetland, management plans should cover inside and outside of the wetland and separate the population into multiple management units to address the different movement patterns and wetland utilization of the population.
    Matched MeSH terms: Seasons
  2. Nur Arina Bazilah Kamisan, Muhammad Hisyam Lee, Suhartono Suhartono, Abdul Ghapor Hussin, Yong Zulina Zubairi
    Sains Malaysiana, 2018;47:419-426.
    Forecasting a multiple seasonal data is differ from a usual seasonal data since it contains more than one cycle in a
    data. Multiple linear regression (MLR) models have been used widely in load forecasting because of its usefulness in the
    forecast a linear relationship with other factors but MLR has a disadvantage of having difficulties in modelling a nonlinear
    relationship between the variables and influencing factors. Neural network (NN) model, on the other hand, is a good
    model for modelling a nonlinear data. Therefore, in this study, a combination of MLR and NN models has proposed this
    combination to overcome the problem. This hybrid model is then compared with MLR and NN models to see the performance
    of the hybrid model. RMSE is used as a performance indicator and a proposed graphical error plot is introduce to see the
    error graphically. From the result obtained this model gives a better forecast compare to the other two models.
    Matched MeSH terms: Seasons
  3. Eamsobhana P, Wanachiwanawin D, Roongruangchai K, Song SL, Yong HS
    J Helminthol, 2017 Nov;91(6):767-771.
    PMID: 27890039 DOI: 10.1017/S0022149X16000857
    Human gnathostomiasis is a food-borne zoonosis caused by a tissue nematode of the genus Gnathostoma. The disease is highly endemic in Asia, including Thailand. The freshwater swamp eel (Monopterus albus), the second intermediate host of the gnathostome nematode, has an important role in transmitting the infection in Thailand. Surveys on the infective larvae of Gnathostoma spinigerum based on morphological features in freshwater swamp eels have been performed continuously and reported in Thailand. However, there is still limited molecular data on intra-species variations of the parasite. In this study, a total of 19 third-stage larvae of morphologically identified G. spinigerum were collected from 437 liver samples of freshwater swamp eels purchased from a large wholesale market in Bangkok, Thailand. Molecular characterization based on mitochondrial cytochrome c oxidase subunit I (COI) sequences was performed to elucidate their genetic variations and phylogenetic relationship. Among the 19 infective larvae recovered from these eels, 16 were sequenced successfully. Phylogenetic analyses inferred from the partial COI gene showed the presence of three distinct COI haplotypes. Our findings confirm the presence of G. spinigerum as the main species in Thailand.
    Matched MeSH terms: Seasons
  4. Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, et al.
    Sci Total Environ, 2019 Jun 20;670:1060-1067.
    PMID: 31018421 DOI: 10.1016/j.scitotenv.2019.03.245
    With the population growth, urbanization and industrialization, China has become a hotspot of atmospheric deposition nitrogen (ADN), which is a threat to ecosystem and food safety. However, the impacts of increased ADN on rice growth and grain metal content are little studied. Based on previous long-term ADN studies, greenhouse experiment was conducted with four simulated ADN rates of 0, 30, 60 and 90 kg N ha-1 yr-1 (CK, N1, N2 and N3 as δ15N, respectively) to assess rice growth and metal uptake in a red soil ecosystem of southeast China during 2016-2017. Results showed that simulated ADN could promote rice growth and increase yields by 15.68-24.41% (except N2) and accumulations of cadmium (Cd) or copper (Cu) in organs. However, there was no linear relationship between ADN rate and rice growth or Cd or Cu uptake. The 15N-ADN was mainly accumulated in roots (21.31-67.86%) and grains (25.26-49.35%), while Cd and Cu were primarily accumulated in roots (78.86-93.44% and 90.00-96.24%, respectively). 15N-ADN and Cd accumulations in roots were significantly different between the two growing seasons (p 
    Matched MeSH terms: Seasons
  5. Mai W, Ren Y, Tian X, Al-Mahdi AY, Peng R, An J, et al.
    J Med Virol, 2023 Apr;95(4):e28692.
    PMID: 36946502 DOI: 10.1002/jmv.28692
    The coronavirus disease 2019 (COVID-19) pandemic and related public health intervention measures have been reported to have resulted in the reduction of infections caused by influenza viruses and other common respiratory viruses. However, the influence may be varied in areas that have different ecological, economic, and social conditions. This study investigated the changing epidemiology of 8 common respiratory pathogens, including Influenza A (IFVA), Influenza B (IFVB), Respiratory syncytial virus (HRSV), rhinovirus (RV), Human metapneumovirus Adenovirus, Human bocavirus, and Mycoplasma pneumoniae, among hospitalized children during spring and early summer in 2019-2021 in two hospitals in Hainan Island, China, in the COVID-19 pandemic era. The results revealed a significant reduction in the prevalence of IFVA and IFVB in 2020 and 2021 than in 2019, whereas the prevalence of HRSV increased, and it became the dominant viral pathogen in 2021. RV was one of the leading pathogens in the 3 year period, where no significant difference was observed. Phylogenetic analysis revealed close relationships among the circulating respiratory viruses. Large scale studies are needed to study the changing epidemiology of seasonal respiratory viruses to inform responses to future respiratory virus pandemics.
    Matched MeSH terms: Seasons
  6. Hashim R, Song TH, Muslim NZ, Yen TP
    Trop Life Sci Res, 2014 Dec;25(2):21-39.
    PMID: 27073597 MyJurnal
    This study aimed to assess the concentrations of cadmium (Cd), nickel (Ni) and lead (Pb) in the tissues of fish collected from the lower reach of the Kelantan River, Malaysia. Fishes were collected using gill nets during the dry and wet seasons. A total of 78 individual fish were caught and comprised 6 families, 11 genera and 13 species. The dorsal muscle was analysed using a graphite furnace Atomic Absorption Spectrometer (AAS). The mean concentration of Cd in Chitala chitala (0.076 mg/kg) was above the critical limit values of the European Commission (EC), World Health Organization (WHO) and Food and Agriculture Organization (FAO). The mean concentrations of Cd in Barbonymus gonionatus and Tachysurus maculatus were already at the level of concern, whereas the other species were approaching the limits of permissible levels. No fish samples were found to have a Ni level higher than the permissible limit of 0.5-0.6 mg/kg set by the WHO (1985). Osteochilus hasseltii (0.169 mg/kg) and T. maculatus (0.156 mg/kg) showed high Pb concentrations. The concentrations of heavy metals were found to be elevated in the wet season (p<0.05). Omnivorous fish were detected with elevated concentrations of Cd and Ni, whereas carnivorous fish had the highest concentration of Pb. The concentrations of Cd and Pb in fish tissues were positively correlated with fish weight (p<0.05). This study determined that the fish species caught in the Kelantan River were contaminated with non-essential metals (Cd, Ni and Pb). Nevertheless, the heavy metal concentration in the fish tissues, with the exception of C. chitala, O. hasseltii and T. maculatus, did not exceed the EC, FAO, Malaysian Food Act (MFA) or WHO guidelines.
    Matched MeSH terms: Seasons
  7. Yeang HY
    Bioessays, 2009 Nov;31(11):1211-8.
    PMID: 19795408 DOI: 10.1002/bies.200900078
    The plant maintains a 24-h circadian cycle that controls the sequential activation of many physiological and developmental functions. There is empirical evidence suggesting that two types of circadian rhythms exist. Some plant rhythms appear to be set by the light transition at dawn, and are calibrated to circadian (zeitgeber) time, which is measured from sunrise. Other rhythms are set by both dawn and dusk, and are calibrated to solar time that is measured from mid-day. Rhythms on circadian timing shift seasonally in tandem with the timing of dawn that occurs earlier in summer and later in winter. On the other hand, rhythms set to solar time are maintained independently of the season, the timing of noon being constant year-round. Various rhythms that run in-phase and out-of-phase with one another seasonally may provide a means to time and induce seasonal events such as flowering.
    Matched MeSH terms: Seasons
  8. Yeang HY
    New Phytol, 2007;175(2):283-9.
    PMID: 17587376
    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
    Matched MeSH terms: Seasons*
  9. Kyaw MH, Spinardi JR, Jagun O, Franco Villalobos C, Kapetanakis V, Sharf-Williams R, et al.
    BMJ Open, 2024 Jan 31;14(1):e081019.
    PMID: 38296298 DOI: 10.1136/bmjopen-2023-081019
    OBJECTIVES: Understanding disease seasonality can help predict the occurrence of outbreaks and inform public health planning. Respiratory diseases typically follow seasonal patterns; however, knowledge regarding the seasonality of COVID-19 and its impact on the seasonality of influenza remains limited. The objective of this study was to provide more evidence to understand the circulation of SARS-CoV-2, the virus responsible for COVID-19, in an endemic scenario to guide potential preventive strategies.

    DESIGN: In this study, a descriptive analysis was undertaken to describe seasonality trends and/or overlap between COVID-19 and influenza in 12 low-income and middle-income countries using Our World in Data and FluMart data sources. Plots of COVID-19 and influenza cases were analysed.

    SETTING: Singapore, Thailand, Malaysia, the Philippines, Argentina, Brazil, Mexico, South Africa, Morocco, Bahrain, Qatar and Saudi Arabia.

    OUTCOME MEASURES: COVID-19 cases and influenza cases.

    RESULTS: No seasonal patterns of SARS-CoV-2 or SARS-CoV-2/influenza cocirculation were observed in most countries, even when considering the avian influenza pandemic period.

    CONCLUSIONS: These results can inform public health strategies. The lack of observed seasonal behaviour highlights the importance of maintaining year-round vaccination rather than implementing seasonal campaigns. Further research investigating the influence of climate conditions, social behaviour and year-round preventive measures could be fundamental for shaping appropriate policies related to COVID-19 and respiratory viral disease control in low-income and middle-income countries as COVID-19 variant data and epidemiologic patterns accrue over time.

    Matched MeSH terms: Seasons
  10. Romeli S, Hassan SS, Yap WB
    Malays J Med Sci, 2020 Mar;27(2):10-20.
    PMID: 32788837 DOI: 10.21315/mjms2020.27.2.2
    In light of the limited protection conferred by current influenza vaccines, immunisation using universal influenza vaccines has been proposed for protection against all or most influenza sub-types. The fundamental principle of universal influenza vaccines is based on conserved antigens found in most influenza strains, such as matrix 2, nucleocapsid, matrix 1 and stem of hemagglutinin proteins. These antigens trigger cross-protective immunity against different influenza strains. Many researchers have attempted to produce the conserved epitopes of these antigens in the form of peptides in the hope of generating universal influenza vaccine candidates that can broadly induce cross-reactive protection against influenza viral infections. However, peptide vaccines are poorly immunogenic when applied individually owing to their small molecular sizes. Hence, strategies, such as combining peptides as multi-epitope vaccines or presenting peptides on vaccinia virus particles, are employed. This review discusses the clinical and laboratory findings of several multi-epitope peptide vaccine candidates and vaccinia-based peptide vaccines. The majority of these vaccine candidates have reached the clinical trial phase. The findings in this study will indeed shed light on the applicability of universal influenza vaccines to prevent seasonal and pandemic influenza outbreaks in the near future.
    Matched MeSH terms: Seasons
  11. Chiang GL, Samarawickrema WA, Mak JW, Cheong WH, Sulaiman I, Yap HH
    Ann Trop Med Parasitol, 1986 Feb;80(1):117-21.
    PMID: 2873797
    Field observations were made on Coquillettidia crassipes during a study of Mansonia in a swamp forest ecotype in Tanjong Karang. There was an increase in abundance in July consistent with the increase in abundance of Mansonia and an increase in rainfall. The biting cycle showed a dramatic early peak during the period 1900-2000 hours. The probability of daily survival through one day for the first three gonotrophic cycles was 0.770, 0.722 and 0.759. Two of the 54 Cq. crassipes dissected were infective, with two and 25 L3 larvae of Brugia. Both subperiodic B. malayi and B. pahangi developed into L3 larvae in laboratory bred Cq. crassipes. The index of experimental infection was higher for B. pahangi. Mansonia bonneae and Ma. uniformis showed higher indices of experimental infection than Cq. crassipes for subperiodic B. malayi. It is concluded that in an endemic area with a high density of Cq. crassipes it could act as a secondary vector of Brugian filariasis.
    Matched MeSH terms: Seasons
  12. Cui J, Zhang Y, Yang F, Chang Y, Du K, Chan A, et al.
    Ecotoxicol Environ Saf, 2020 Apr 15;193:110344.
    PMID: 32092583 DOI: 10.1016/j.ecoenv.2020.110344
    To identify seasonal fluxes and sources of dissolved inorganic nitrogen (DIN) wet deposition, concentrations and δ15N signatures of nitrate (NO3-) and ammonium (NH4+) in wet precipitation were measured at four typical land-use types in the Three Gorges reservoir (TGR) area of southwest China for a one-year period. Higher DIN fluxes were recorded in spring and summer and their total fluxes (averaged 7.58 kg N ha-1) were similar to the critical loads in aquatic ecosystems. Significant differences of precipitation δ15N were observed for NH4+-N between town and wetland sites in spring and between urban and rural sites in summer. For NO3--N, significant differences of precipitation δ15N were observed between town and rural sites in spring and between urban and town sites in autumn, respectively. Quantitative results of NO3--N sources showed that both biomass burning and coal combustion had higher fluxes at the urban site especially in winter (0.18 ± 0.09 and 0.19 ± 0.08 kg N ha-1), which were about three times higher than those at the town site. A similar finding was observed for soil emission and vehicle exhausts in winter. On the whole, DIN wet deposition averaged at 12.13 kg N ha-1 yr-1 with the urban site as the hotspot (17.50 kg N ha-1 yr-1) and regional NO3--N fluxes had a seasonal pattern with minimum values in winter. The contribution to NO3--N wet deposition from biomass burning was 26.1 ± 14.1%, which is the second dominant factor lower than coal combustion (26.5 ± 12.6%) in the TGR area during spring and summer. Hence N emission reduction from biomass burning, coal combustion and vehicle exhausts should be strengthened especially in spring and summer to effectively manage DIN pollution for the sustainable development in TGR area.
    Matched MeSH terms: Seasons
  13. Issara, U., Zzaman, W., Yang, T.A.
    MyJurnal
    This review of literature provides an overview on the compositional data of Rambutan (Nephelium lappaceum Linn.) and rambutan seed fat for usage in chocolate product. It is a seasonal fruit native of west Malaysia and Sumatra. It is harvested when the fruit have reached optimum visual and organoleptic quality. Rambutans rapidly deteriorate unless proper handling techniques are employed. The rambutan fruits are deseeded during processing and these seeds (~ 4-9 g/100 g) are a waste by-product of the canning industry. And some studies was showed that rambutan seed possesses a relatively high amount of fat and these fats are similar to those of cocoa fat, although have some different physical properties. In the present research about rambutan seed fat continued increasing due to from previous research was found that this fat can use as substitute in cocoa butter for chocolate products. Therefore, the extracted fat from rambutan seed not only could be used for manufacturing candles, soaps, and fuels, but it also has a possible to be a source of natural edible fat with feasible industry use.
    Matched MeSH terms: Seasons
  14. Oettli P, Behera SK, Yamagata T
    Sci Rep, 2018 02 02;8(1):2271.
    PMID: 29396527 DOI: 10.1038/s41598-018-20298-0
    The influence of local conditions and remote climate modes on the interannual variability of oil palm fresh fruit bunches (FFB) total yields in Malaysia and two major regions (Peninsular Malaysia and Sabah/Sarawak) is explored. On a country scale, the state of sea-surface temperatures (SST) in the tropical Pacific Ocean during the previous boreal winter is found to influence the regional climate. When El Niño occurs in the Pacific Ocean, rainfall in Malaysia reduces but air temperature increases, generating a high level of water stress for palm trees. As a result, the yearly production of FFB becomes lower than that of a normal year since the water stress during the boreal spring has an important impact on the total annual yields of FFB. Conversely, La Niña sets favorable conditions for palm trees to produce more FFB by reducing chances of water stress risk. The region of the Leeuwin current also seems to play a secondary role through the Ningaloo Niño/ Niña in the interannual variability of FFB yields. Based on these findings, a linear model is constructed and its ability to reproduce the interannual signal is assessed. This model has shown some skills in predicting the total FFB yield.
    Matched MeSH terms: Seasons
  15. Pavitra SP, Low VL, Tan TK, Lim YAL, Ya'cob Z
    Acta Trop, 2020 Feb;202:105275.
    PMID: 31747545 DOI: 10.1016/j.actatropica.2019.105275
    Blackflies (Diptera: Simuliidae) are ecologically and medically important insects but they have been understudied in Malaysia. Accordingly, a study on the temporal variation in diversity and community structure of preimaginal blackflies was conducted for the first time in Malaysia. A total of 865 preimaginal blackflies were collected in 120 samplings from five streams across three monsoon seasons from February 2018 until January 2019. Ten species were recorded and most frequently collected species were Simulium cheongi, Simulium vanluni and Simulium jeffreyi. Relatively common species were Simulium roslihashimi, Simulium tani complex and Simulium trangense. No significant changes of rainfall was observed between three monsoon seasons as well as the seasons with species and physiochemical parameters except acidity (pH) (P 20%) indicated that S. vanluni and S. jeffreyi were commonly associated with wider, deeper and fast-flowing streams with low conductivity and larger streambed particle. In contrast, S. cheongi was associated with smaller, slower and small streambed particle. This first extensive bimonthly study has uncovered the species community structure as well as the changes of stream physicochemical parameters over time although they were not greatly and significantly influenced by the monsoon seasons. Species distribution, richness and abundance, however, were highly determined by the stream width, depth and velocity, therefore, were vital in shaping diversity and community structure of preimaginal blackflies.
    Matched MeSH terms: Seasons
  16. Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, et al.
    Nature, 2017 10 05;550(7674):105-108.
    PMID: 28953870 DOI: 10.1038/nature24038
    The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
    Matched MeSH terms: Seasons
  17. Mariana A, Ho TM, Sofian-Azirun M, Wong AL
    PMID: 11414418
    Allergy to house dust mites (HDM) is an important cause of asthma and rhinitis in Malaysia. This study was carried out to evaluate the dust mite fauna in the Klang Valley. Dust samples were collected from 20 houses from March 1994 to February 1995. Thirty-three dust samples from mattresses were examined monthly for the occurrence of HDM. A total of 22 species in 9 families of HDM was identified. The most common and densely populated species was Blomia tropicalis with an average density of 8,934 mites/g of dust. Dermatophagoides pteronyssinus was the next in abundance, followed by Malayoglyphus intermedius. All houses surveyed were found to be infested with HDM and every house had at least 6 species of HDM. B. tropicalis and D. pteronyssinus were found in all mattresses. HDM in the Klang Valley were found to be highly prevalent and present in high densities. In this study, counts of D. pteronyssinus was found to exceed the proposed exposure threshold of 500 mites/g dust, for triggering acute asthma. Although counts of B. tropicalis exceeded D. pteronyssinus, no conclusion could be made because there is currently no exposure threshold for triggering acute asthma, for this species. Monthly distribution of B. tropicalis and D. pteronyssinus showed 2 peaks and 4 peaks, respectively. The major peak for D. pteronysinus was in January 1995 whereas for B. tropicalis, the major peak was more variable and occurred between November 1994 to January 1995. Both the species showed minor peak in April 1994.
    Matched MeSH terms: Seasons
  18. Brandon-Mong GJ, Littlefair JE, Sing KW, Lee YP, Gan HM, Clare EL, et al.
    Bull. Entomol. Res., 2018 Dec;108(6):792-799.
    PMID: 29441836 DOI: 10.1017/S000748531800010X
    Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.
    Matched MeSH terms: Seasons
  19. Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, et al.
    J Affect Disord, 2014;167:104-11.
    PMID: 24953482 DOI: 10.1016/j.jad.2014.05.032
    The onset of bipolar disorder is influenced by the interaction of genetic and environmental factors. We previously found that a large increase in sunlight in springtime was associated with a lower age of onset. This study extends this analysis with more collection sites at diverse locations, and includes family history and polarity of first episode.
    Matched MeSH terms: Seasons*
  20. Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, et al.
    J Psychiatr Res, 2015 May;64:1-8.
    PMID: 25862378 DOI: 10.1016/j.jpsychires.2015.03.013
    Environmental conditions early in life may imprint the circadian system and influence response to environmental signals later in life. We previously determined that a large springtime increase in solar insolation at the onset location was associated with a younger age of onset of bipolar disorder, especially with a family history of mood disorders. This study investigated whether the hours of daylight at the birth location affected this association.
    Matched MeSH terms: Seasons*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links