Displaying publications 21 - 40 of 185 in total

Abstract:
Sort:
  1. Ahmad SZN, Al-Gheethi A, Hamdan R, Othman N
    Environ Sci Pollut Res Int, 2020 Oct;27(28):35184-35194.
    PMID: 32583114 DOI: 10.1007/s11356-020-09582-7
    The current study aimed to investigate the efficiencies and mechanisms of slag filter media for removing phosphorus from synthetic wastewater. The steel slag with high ferric oxides (Fe2O3) was subjected for the electric arc furnace (EAF) and selected as the filter media (HFe). The chemical characteristics of HFe were determined using pH, point of zero charge (PZC) and XRF. The phosphorus removal efficiency was studied in a designed vertical steel slag column rock filters in unaerated HFe (UEF) and aerated HFe (AEF) system. The microstructure of HFe was analyzed by FTIR, XRD and SEM-EDX analysis. The results of XRF revealed that ferric oxide (Fe2O3) ranged from 26.1 to 38.2%. PZC for Filter HFe was recorded at pH 10.55 ± 0.27. The highest efficiencies were recorded by UEF and AEF systems at pH 3 and pH 5 (89.97 ± 4.02% and 79.95 ± 6.25% at pH 3 and 72.97 ± 8.38% and 66.00 ± 12.85% at pH 5 for UEF and AEF, respectively). These findings indicated that AEF exhibiting higher removal than UEF systems might be due to presence high Fe concentration in AEF which play important role in the phosphorus removal. The main elements available on the surface of HFe included carbon, oxygen, iron, calcium, magnesium, silicon, platinum, sulphur, manganese, titanium and aluminium. The XRD analysis indicated that the precipitation of orthophosphate as calcium and iron-phosphates was the removal mechanism as confirmed using FT-IR analysis. These findings demonstrated the efficiency of HFe in removing of phosphorus from wastewater.
    Matched MeSH terms: Steel*
  2. Tay WM
    Dent J Malaysia Singapore, 1968 Feb;8(1):24-8.
    PMID: 5248555
    Matched MeSH terms: Stainless Steel
  3. Md Razak Daud, Wan Nor Shela Ezwane Wan Jusoh, Syahrullail Samion
    MyJurnal
    This study investigates metal removal rate (MRR) of the biomaterial by using discharge machine Neuar CNC A50 Electrical Discharge Machine Die Sinking (EDM DS). The purpose of this study is to compare machining curvature cup for material SKD 11 and stainless steel with shape curvature cup acetabular. The result showed that electrode wear is higher when high current is applied. For each applied current 0.5A and 3.0A could result electrode wear of 0.236 mm, 0.246 mm and 0.269 mm respectively. Mean time of complete discharged for each pit with 0.3mm depth with supply 0. 5A is 6.51 minutes; 1. 5A is 3.54 minutes and 3A is 1.52 minutes. The biggest mean parameter of the pit is 0.356 mm, with 3A of current is applied. From this study, it can be concluded that low current set may give lower electrode copper wear. The experiment will help a researcher to discharge biomaterial types of metal with small size of copper electrode use of EDM DS Neuar for discharge multi hole or micro pit.
    Matched MeSH terms: Stainless Steel
  4. Amir Syafiq Samsudin, Mohd Hisbany Mohd Hashim, Siti Hawa Hamzah, Afidah Abu Bakar
    Scientific Research Journal, 2018;15(1):15-29.
    MyJurnal
    Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction ofribbed slab reduces concrete materials and thusthe cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2 . The slab wastested underthree-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. Thisresearch showsthat SFRCRibbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.
    Matched MeSH terms: Steel
  5. Ahmad Fuad Ab Ghani, Mohamad Kamarul Anwar Sahar, Muhammad Ridzuan Husyairi Azmi, Nurul Izzati Medon, Muhammad Syazwan Samsuri, Muhammad Syurabil Abdani
    MyJurnal
    There are several types of grating, such as platform, bridge decks and filters. In design process, there
    are several important terms that have to be prioritised; engineering design, strength to weight ratio, cost,
    maintainability, reparability etcetera. Advanced materials, such as composite materials offer great
    strength to weight ratio and high mechanical properties for grating fabrication. Furthermore the
    reparability and maintenance problems could be solved as it is anti corrosion and the long service life
    attribute of composite makes it a great design material for replacement of conventional steel or
    aluminium. Bio composites, such as bamboo and coir fiber yield advantage in terms of less cost and
    abundance availability compared to commercial unidirectional composite materials, such as glass fiber
    reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) which is considerably
    expensive yet possess higher mechanical properties. This papers presents a conceptual design of
    grating design utilizing bamboo composite as material. Pugh method has been chosen as design criteria
    selection matrix in finalizing the design of industrial grating for scaffolding (Pugh, 1991).
    Matched MeSH terms: Steel
  6. Hosen MA, Jumaat MZ, Alengaram UJ, Islam ABMS, Bin Hashim H
    Polymers (Basel), 2016 Mar 03;8(3).
    PMID: 30979167 DOI: 10.3390/polym8030067
    Existing structural components require strengthening after a certain period of time due to increases in service loads, errors in design, mechanical damage, and the need to extend the service period. Externally-bonded reinforcement (EBR) and near-surface mounted (NSM) reinforcement are two preferred strengthening approach. This paper presents a NSM technique incorporating NSM composites, namely steel and carbon fiber-reinforced polymer (CFRP) bars, as reinforcement. Experimental and analytical studies carried out to explore the performance of reinforced concrete (RC) members strengthened with the NSM composites. Analytical models were developed in predicting the maximum crack spacing and width, concrete cover separation failure loads, and deflection. A four-point bending test was applied on beams strengthened with different types and ratios of NSM reinforcement. The failure characteristics, yield, and ultimate capacities, deflection, strain, and cracking behavior of the beams were evaluated based on the experimental output. The test results indicate an increase in the cracking load of 69% and an increase in the ultimate load of 92% compared with the control beam. The predicted result from the analytical model shows good agreement with the experimental result, which ensures the competent implementation of the present NSM-steel and CFRP technique.
    Matched MeSH terms: Steel
  7. Nadzirah Mohamad Radzi, Zafri Azran Abdul Majid
    MyJurnal
    Carabiner is one of Personal Protective Equipment (PPE), which is used to protect the users from hazards by reducing any chance of serious injury. Thus, it is very important to detect even a small
    defect on the component before it becomes worse that could give harm to the users. The aim of this paper is to find out the appropriate imaging technical factors of steel carabiner by using computed radiography (CR). Methods: Radiographic images of carabiner were obtained by manipulating the values of kVp and mAs with respect to contrast and density. A preliminary study was carried out to determine the exposure factor combination in order to produce perceptible visual quality of radiographic images. Positioning techniques applied in this study were whole view (open-gate and close-gate position) and screw view (open-gate and close-gate position). An assessor was invited to evaluate the radiographs by using Image Quality Criteria Scoring (ICS) adapted from European Guidelines on Quality Criteria for Diagnostic Radiographic Images. Results: Findings showed that the optimum values of kVp and mAs in imaging whole view (open-gate and close-gate) carabiner were 133 kVp and 28 mAs while, for screw view (opengate and close-gate) the range of kVp and mAs preferred were 121 kVp to 133 kVp and 28 mAs to 36 mAs respectively. Conclusion: This study has found that the use of medical CR to expose metal steel such as
    carabiner is accepted. By manipulating the imaging parameters, CR can produce a good quality image of carabiner.
    Matched MeSH terms: Steel
  8. Al-Nini A, Nikbakht E, Syamsir A, Shafiq N, Mohammed BS, Al-Fakih A, et al.
    Materials (Basel), 2020 Jul 09;13(14).
    PMID: 32659956 DOI: 10.3390/ma13143064
    The concrete-filled double skin steel tube (CFDST) is a more viable option compared to a concrete-filled steel tube (CFST) due to consisting a hollow section, while degradation is enhanced simply by using carbon fiber-reinforced polymer (CFRP). Hence, the stabilization of a concrete's ductile strength needs high- performance fiber-reinforced cementitious conmposite. This study investigates the behavior of high-performance fiber-reinforced cementitious composite-filled double-skin steel tube (HPCFDST) beams strengthened longitudinally with various layers, lengths, and configurtion of CFRP sheets. The findings showed that, with increased CFRP layers, the moment capacity and flexural stiffness values of the retrofitted HPCFDST beams have significantly improved. For an instant, the moment capacity of HPCFDST beams improved by approximately 28.5% and 32.6% when they were wrapped partially along 100% with two and three layers, respectively, compared to the control beam. Moreover, the moment capacity of the HPCFDST beam using two partial layers of CFRP along 75% of its sufficient length was closed to the findings of the beam with two full CFRP layers. For energy absorption, the results showed a vast disparity. Only the two layers with a 100% full length and partial wrapping showed increasing performance over the control. Furthermore, the typical failure mode of HPCFDST beams was observed to be local buckling at the top surface near the point of loading and CFRP rapture at the bottom of effect length.
    Matched MeSH terms: Steel
  9. Wo, Yii Mei, Hidayah Shahar, Zaharudin Ahmad
    MyJurnal
    Present of 241Am in the environment is being determined as part of surveillance and research
    programs related to nuclear activities. The separation of 241Am from environmental samples was
    carried out against the IAEA’s reference material by using an improved in-house radiochemical
    separation method through anion exchange column, followed by the electro-deposition on a
    stainless steel disc, and finally assayed on alpha spectrometry counting system. The resulting
    spectra showed good isolated peak, indicating a good separation of the radionuclide of interest.
    The analytical results were in good agreement with the certified value for IAEA-326 and IAEA-368
    with the calculated U-score was 0.36 and 0.82, respectively, showing no significant difference
    between the experimental and certified value. Using this method, distributions of 241Am in seabed
    surface sediment in the Exclusive Economic Zone of East Coast Peninsular Malaysia were studied.
    Samples were collected during June 2008 where the concentrations of 241Am were found to be
    ranged from < 0.08 to 0.36 Bq/kg, dry weight.
    Matched MeSH terms: Stainless Steel
  10. Meor Yusoff Meor Sulaiman
    MyJurnal
    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive X-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyse a very wide concentration range, fast analysis with no tedious sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results obtained from this analysis with certified reference standards show very small differences between them.
    Matched MeSH terms: Stainless Steel
  11. Ghazali, F.A., Salleh, Z., Hyie, K.M., Taib, Y.M., Nik Rozlin, N.M.
    MyJurnal
    This study focuses on examining the influence of post weld impact treatment (PWIT) using Pneumatic Impact Treatment (PIT) for spot welded joint on mechanical properties and fatigue failure. PWIT is one of the methods for improving mechanical properties and fatigue strength of welded joints. One of the versatile techniques of PWIT used for this study is PIT. The material investigated in this study was carbon steel with welded single lap shear joint with the constant thickness of 1.2mm. All the welded samples were later performing the tensile shear test, hardness test, and fatigue test. The tensile shear test was conducted on the spot welded both treated and untreated samples using crosshead speed of 2 mm/ min, while hardness test was performed using 1kgf load via Vickers hardness indenter. Fatigue test was conducted using R=0.1 and frequency of 10 Hz. The effects of PIT on tensile-shear properties, hardness, and fatigue failure were evaluated. It was found that the implementation of PIT has increased tensile shear and hardness significantly and prolonged lifetime of spot welded joint.
    Matched MeSH terms: Steel
  12. Syaidah Athirah Dzolin, Yusairie Mohd, Hadariah Bahron, Nurul Huda Abdul Halim
    MyJurnal
    The syntheses of salicylideneaniline (L1a) and 4-hydroxybenzalaniline (L1b) was carried out via condensation reaction giving yields of 80.74% and 81.65% respectively. The compounds were characterised by physical and spectroscopic techniques, namely melting point, micro elemental analysis (C, H and N), 1H Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectroscopy. The characteristic n(C=N) peaks were observed at 1615 cm-1 and 1575 cm-1 respectively. Chronoamperometry (CA) was employed to electrodeposit both compounds on mild steel at 0.1 M inhibitor concentration in 0.3 M NaOH at three different potentials, +0.8 V, +1.05 V and +1.7 V. Formation of yellow imine films was observed on the mild steel. The corrosion behaviour of coated and uncoated mild steel was studied using Linear Polarization Resistance (LPR) in 0.5 M NaCl. Coated mild steel showed better corrosion resistance and with the highest inhibition efficiency of 90.34%, L1a provides a better protection against corrosion for mild steel than L1b.
    Matched MeSH terms: Steel
  13. Norhisam, M., Roslan, M.K., Ishak, A., Hamidon, M.N.
    MyJurnal
    Visual inspection to locate metals embedded in walls or floors is impractical. Detection of these metals can only be done with a proper metal detection. Accordingly, the development of a magnetic imaging system based on giant magneto-resistance (GMR) sensors is presented for metal shape detection . This system is based on magnetic flux leakage testing (MFLT) principle for detecting the shape of ferromagnetic material specimens. The imaging system is constructed using 21 linear GMR sensors array as signals sensing unit (SSU). In this study, a few ferromagnetic SS400 mild steels specimens in various shapes are used as specimens. Image produced confirm system functionality in detecting and evaluating metal shapes.
    Matched MeSH terms: Steel
  14. Md Zin N, Al-Fakih A, Nikbakht E, Teo W, Anwar Gad M
    Materials (Basel), 2019 Dec 11;12(24).
    PMID: 31835775 DOI: 10.3390/ma12244159
    An experimental study is conducted to determine the influence of secondary reinforcement on the behaviour of corbels fabricated with three different types of high-performance fiber-reinforced cementitious composites, including engineered cementitious concrete (ECC); high-performance steel fiber-reinforced composite (HPSFRC); and hybrid fiber-reinforced composite (HyFRC). Two shear span-to-depth ratios (a/d = 0.75 and 1.0) are explored. The mechanical properties of the composites in terms of tensile, compressive, and flexural strengths are investigated. Next, the structural behaviour of the high-performance cementitious composite corbels in terms of ultimate load capacity, ductility, and failure modes under the three-point bending test are investigated. The secondary reinforcement is proven to significantly affect stiffness and ultimately load capacity of all three high-performance composite corbels with an aspect ratio of 0.75. However, the secondary reinforcement was more impactful for the HPSFRC corbels, with 51% increase of ultimate strength. Moreover, in terms of damage, fewer cracks occurred in ECC corbels. HPSFRC corbels displayed the highest level of ductility and deformation capacity compared to the other specimens. The results were comparatively analyzed against the predicted results using truss and plastic truss models which provided relatively reliable shear strength.
    Matched MeSH terms: Steel
  15. Ahmad S, Badshah S, Ul Haq I, Abdullah Malik S, Amjad M, Nasir Tamin M
    Materials (Basel), 2019 Oct 23;12(21).
    PMID: 31652687 DOI: 10.3390/ma12213463
    Wire ropes undergo a fretting fatigue condition when subjected to axial and bending loads. The fretting behavior of wires are classified as line contact and trellis point of contact. The experimental study on the fatigue of wire ropes indicates that most of the failure occurs due to high localized stresses at trellis point of contact. A continuum damage mechanics approach was previously proposed to estimate the fatigue life estimation of wire ropes. The approach majorly depends on the high value of localized stresses as well as the micro-slippage occurs at the contact region. Finite element approach has been used to study radial and axial distribution of stresses and displacement in order to clearly understand the evolution of stresses and existence of relative displacements between neighboring wires under various loading and frictional conditions. The relative movements of contacting wires are more when friction is not considered. In the presence of friction, the relative movement occurs at the boundaries of the contact region. The location of microslip in the presence of friction is backed by the experimental observation stating the crack is initiated at or the outer boundary of the contact spot. The existence of slip is due to different displacement of outer and central wires.
    Matched MeSH terms: Stainless Steel
  16. Saboohi S, Yap S, Chan L, Wong C
    Sains Malaysiana, 2012;41:879-884.
    The emission of Extreme Ultra Violet (EUV) from plasma produced by vacuum spark discharge using stainless steel as anode material was investigated. The operating pressure for all the experiments carried out was maintained at below 10-4 mbar. The discharge voltage tested was from 8 kV to 20 kV. The inter-electrode distance suitable for high intensity and reproducible EUV emissions was found to be in the range of 2.6 mm to 4.6 mm. The output EUV energy scaled as ~ V02, where V0 is the discharge voltage.
    Matched MeSH terms: Stainless Steel
  17. Tan KT, Norhamidi Muhamad, Muchtar A, Abu Bakar Sulong, Neo MC
    Sains Malaysiana, 2016;45:653-658.
    Metallic foams are a new class of materials that have a great potential to be used in various functional and structural applications. Due to their competitive price compared to aluminium, metallic foams are anticipated to become an alternative material for light-weight structures. In this study, stainless steel foams are fabricated using a powder space holder method. The materials used include stainless steel powder, a novel space holder glycine and binders consisting of palm stearin and of polyethylene (PE). The stainless steel foams are sintered at 1100o C, 1200o C and 1300o C with sintering times of 1, 2 and 3 h, respectively, to investigate the effects of the sintering parameters on the compressive yield strength of the stainless steel foams. The results showed that all of the stainless steel foams produced exhibit the general behaviours of metal foams. The sintering time is the most significant parameter that influences the compressive yield strength of stainless steel foams. Increasing the sintering temperature and sintering time will increase the compressive yield strength. The interaction between the sintering temperature and sintering time is found to be not statistically significant.
    Matched MeSH terms: Stainless Steel
  18. Sim KS, Kho YY, Tso CP, Nia ME, Ting HY
    Scanning, 2013 Mar-Apr;35(2):75-87.
    PMID: 22777599 DOI: 10.1002/sca.21037
    Detection of cracks from stainless steel pipe images is done using contrast stretching technique. The technique is based on an image filter technique through mathematical morphology that can expose the cracks. The cracks are highlighted and noise removal is done efficiently while still retaining the edges. An automated crack detection system with a camera platform has been successfully implemented. We compare crack extraction in terms of quality measures with those of Otsu's threshold technique and the another technique (Iyer and Sinha, 2005). The algorithm shown is able to achieve good results and perform better than these other techniques.
    Matched MeSH terms: Stainless Steel
  19. Shukri AA, Darain KMU, Jumaat MZ
    Materials (Basel), 2015 Jul 08;8(7):4131-4146.
    PMID: 28793429 DOI: 10.3390/ma8074131
    Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.
    Matched MeSH terms: Steel
  20. Bahnasi FI, Abd-Rahman AN, Abu-Hassan MI
    J Clin Exp Dent, 2013 Oct 1;5(4):e197-202.
    PMID: 24455081 DOI: 10.4317/jced.51113
    1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer.
    Matched MeSH terms: Stainless Steel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links