Currently, the authentication analysis of edible fats and oils is an emerging issue not only by producers but also by food industries, regulators, and consumers. The adulteration of high quality and expensive edible fats and oils as well as food products containing fats and oils with lower ones are typically motivated by economic reasons. Some analytical methods have been used for authentication analysis of food products, but some of them are complex in sampling preparation and involving sophisticated instruments. Therefore, simple and reliable methods are proposed and developed for these authentication purposes. This review highlighted the comprehensive reports on the application of infrared spectroscopy combined with chemometrics for authentication of fats and oils. New findings of this review included (1) FTIR spectroscopy combined with chemometrics, which has been used to authenticate fats and oils; (2) due to as fingerprint analytical tools, FTIR spectra have emerged as the most reported analytical techniques applied for authentication analysis of fats and oils; (3) the use of chemometrics as analytical data treatment is a must to extract the information from FTIR spectra to be understandable data. Next, the combination of FTIR spectroscopy with chemometrics must be proposed, developed, and standardized for authentication and assuring the quality of fats and oils.
Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.
Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase.
Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death.
Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977-3028, 1666-1739, and 740-1446 cm(-1) revealed the highest value of coefficient of determination (R (2), 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985-3024 and 752-1755 cm(-1) using the first derivative FTIR spectra with R (2) and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977-3028 cm(-1), 1666-1739 cm(-1), and 740-1446 cm(-1) were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R (2) and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.
Lard being an edible fat could be used in different forms in food systems. In this study, composition and thermal analysis of lard stearin (LS) and lard olein (LO) were undertaken to determine some common parameters which would enable their detection in food. A sample of native lard was partitioned into LS and LO using acetone as solvent and the fractions were compared to the original sample with respect to basic physico-chemical parameters, fatty acid and triacylglycerol (TAG) composition, and thermal characteristics. Although LS and LO displayed wider variations in basic physico-chemical parameters, thermal properties and solidification behavior, they do possess some common characteristic features with regard to composition. In spite of the proportional differences in the major fatty acids, both LS and LO are found to possess extremely high amount of palmitic (C16:0) acid at the sn-2 positions of their TAG molecules. Similar to native lard, both LS and LO contained approximately equal proportions of TAG molecules namely, linoleoyl-palmitoyl-oleoyl glycerol (LPO) and dioleoyl-palmitoyl glycerol (OPO). Hence, the calculated LPO/OPO ratio for LS and LO are comparably similar to that of native lard.
It is well established that plant phenolics elicit various biological activities, with positive effects on health. Palm oil production results in large volumes of aqueous by-products containing phenolics. In the present study, we describe the effects of oil palm phenolics (OPP) on several degenerative conditions using various animal models. OPP reduced blood pressure in a NO-deficient rat model, protected against ischaemia-induced cardiac arrhythmia in rats and reduced plaque formation in rabbits fed an atherogenic diet. In Nile rats, a spontaneous model of the metabolic syndrome and type 2 diabetes, OPP protected against multiple aspects of the syndrome and diabetes progression. In tumour-inoculated mice, OPP protected against cancer progression. Microarray studies on the tumours showed differential transcriptome profiles that suggest anti-tumour molecular mechanisms involved in OPP action. Thus, initial studies suggest that OPP may have potential against several chronic disease outcomes in mammals.
In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia.
The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
Plectranthus amboinicus (Lour.) Spreng. is a perennial herb belonging to the family Lamiaceae which occurs naturally throughout the tropics and warm regions of Africa, Asia and Australia. This herb has therapeutic and nutritional properties attributed to its natural phytochemical compounds which are highly valued in the pharmaceutical industry. Besides, it has horticultural properties due to its aromatic nature and essential oil producing capability. It is widely used in folk medicine to treat conditions like cold, asthma, constipation, headache, cough, fever and skin diseases. The leaves of the plant are often eaten raw or used as flavoring agents, or incorporated as ingredients in the preparation of traditional food. The literature survey revealed the occurrence 76 volatiles and 30 non-volatile compounds belonging to different classes of phytochemicals such as monoterpenoids, diterpenoids, triterpenoids, sesquiterpenoids, phenolics, flavonoids, esters, alcohols and aldehydes. Studies have cited numerous pharmacological properties including antimicrobial, antiinflammatory, antitumor, wound healing, anti-epileptic, larvicidal, antioxidant and analgesic activities. Also, it has been found to be effective against respiratory, cardiovascular, oral, skin, digestive and urinary diseases. Yet, scientific validation of many other traditional uses would be appreciated, mainly to discover and authenticate novel bioactive compounds from this herb. This review article provides comprehensive information on the botany, phytochemistry, pharmacology and nutritional importance of P. amboinicus essential oil and its various solvent extracts. This article allows researchers to further explore the further potential of this multi-utility herb for various biomedical applications.
Nerolidol (3,7,11-trimethyl-1,6,10-dodecatrien-3-ol) is a naturally occurring sesquiterpene alcohol that is present in various plants with a floral odor. It is synthesized as an intermediate in the production of (3E)-4,8-dimethy-1,3,7-nonatriene (DMNT), a herbivore-induced volatile that protects plants from herbivore damage. Chemically, nerolidol exists in two geometric isomers, a trans and a cis form. The usage of nerolidol is widespread across different industries. It has been widely used in cosmetics (e.g., shampoos and perfumes) and in non-cosmetic products (e.g., detergents and cleansers). In fact, U.S. Food and Drug Administration (FDA) has also permitted the use of nerolidol as a food flavoring agent. The fact that nerolidol is a common ingredient in many products has attracted researchers to explore more medicinal properties of nerolidol that may exert beneficial effect on human health. Therefore, the aim of this review is to compile and consolidate the data on the various pharmacological and biological activities displayed by nerolidol. Furthermore, this review also includes pharmacokinetic and toxicological studies of nerolidol. In summary, the various pharmacological and biological activities demonstrated in this review highlight the prospects of nerolidol as a promising chemical or drug candidate in the field of agriculture and medicine.
Female Sprague-Dawley rats, 50 days of age, were treated with a single dose of 5 mg of 7,12-dimethylbenz(a)anthracene intragastrically. 3 days after carcinogen treatment, the rats were put on semisynthetic diets containing 20% by weight of corn oil (CO), soybean oil (SBO), crude palm oil (CPO), refined, bleached, deodorized palm oil (RBD PO) and metabisulfite-treated palm oil (MCPO) for 5 months. During the course of experiments, rats fed on different dietary fats had similar rate of growth. Rats fed 20% CO or SBO diet have higher tumor incidence than rats fed on palm oil (PO) diets; however differences of mean tumor latency periods among the groups were not statistically significant. At autopsy, rats fed on high CO or SBO diets had significantly more tumors than rats fed on the three PO diets. Our results showed that high PO diets did not promote chemically induced mammary tumorigenesis in female rats when compared to high CO or SBO diets. CO and SBO differ greatly from the palm oils in their contents of tocopherols, tocotrienols, and carotenes. But further experiments would be required to determine whether the observed differences in tumor incidence and tumor numbers were due to the differences in these minor components or due to the unique triglyceride structure of the palm oils. Analysis of the fatty acid profiles of plasma total lipids of tumor-bearing rats and of the tumor total lipids showed that, with the exception of arachidonic acid, the fatty acid profiles reflect the nature of the dietary fats. At autopsy, there were no differences in the plasma total cholesterol contents among rats fed on different dietary fats, but rats fed on palm oil diets had a significantly higher plasma triglyceride level than that of rats fed CO or SBO diets. As for the tumor lipids, there were no significant differences in the triglyceride, diglyceride, and phospholipid levels when the CO or SBO groups were compared to the palm oil groups.
This study describes a sago starch-based film by incorporation of cinnamon essential oil (CEO) and nano titanium dioxide (TiO2-N). Different concentrations (i.e., 0%, 1%, 3%, and 5%, w/w) of TiO2-N and CEO (i.e., 0%, 1%, 2%, and 3%, v/w) were incorporated into sago starch film, and the physicochemical, barrier, mechanical, and antimicrobial properties of the bionanocomposite films were estimated. Incorporation of CEO into the sago starch matrix increased oxygen and water vapor permeability of starch films while increasing TiO2-N concentration decreased barrier properties. Moisture content also decreased from 12.96% to 8.04%, solubility in water decreased from 25% to 13.7%, and the mechanical properties of sago starch films improved. Sago starch bionanocomposite films showed excellent antimicrobial activity against Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus. Results also showed that incorporation of TiO2-N and CEO had synergistic effects on functional properties of sago starch films. In summary, sago starch films incorporated with both TiO2-N and CEO shows potential application for active packaging in food industries such as fresh pistachio packaging.
Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
A polyglycolised glyceride carrier, Gelucire 50/13, was incorporated with paracetamol as a model drug, filled into hard gelatin capsules and stored at three different temperatures for various lengths of time. The resultant solidified matrix within the capsule was subjected to thermal analysis using differential scanning calorimetry (DSC) to ascertain its supramolecular structure. Polymorphic transformations towards more stable gelucire forms were observed upon aging the matrices, with samples stored at a temperature near the melting range of the lower temperature gelucire melting fraction showing the most profound changes. The increase in the rate of drug release from aged samples could be correlated to the alterations to the supramolecular structure of the gelucire. Accelerated drug release from aged samples could also be seen from in vivo studies using healthy human volunteers, although the extent of absorption was not affected. Therefore, even though the sustainability of release may be compromised by aging the gelucire matrices, the bioavailability of the incorporated drug is unlikely to be affected.
Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields.
Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.