METHODS: We developed mouse models representing three different phenotypes of allergic airway inflammation-eosinophilic, mixed, and neutrophilic asthma via different methods of house dust mite sensitization and challenge. Transcriptomic analysis of the lungs, followed by the RT-PCR, western blot, and confocal microscopy, was performed. Primary human bronchial epithelial cells cultured in air-liquid interface were used to study the mechanisms revealed in the in vivo models.
RESULTS: By whole-genome transcriptome profiling of the lung, we found that airway tight junction (TJ), mucin, and inflammasome-related genes are differentially expressed in these distinct phenotypes. Further analysis of proteins from these families revealed that Zo-1 and Cldn18 were downregulated in all phenotypes, while increased Cldn4 expression was characteristic for neutrophilic airway inflammation. Mucins Clca1 (Gob5) and Muc5ac were upregulated in eosinophilic and even more in neutrophilic phenotype. Increased expression of inflammasome-related molecules such as Nlrp3, Nlrc4, Casp-1, and IL-1β was characteristic for neutrophilic asthma. In addition, we showed that inflammasome/Th17/neutrophilic axis cytokine-IL-1β-may transiently impair epithelial barrier function, while IL-1β and IL-17 increase mucin expressions in primary human bronchial epithelial cells.
CONCLUSION: Our findings suggest that differential expression of TJ, mucin, and inflammasome-related molecules in distinct inflammatory phenotypes of asthma may be linked to pathophysiology and might reflect the differences observed in the clinic.
Methods: The study was conducted in the Department of Medical Microbiology and Parasitology, University Putra Malaysia in 2014-2017. Saline extract protein from the infective larvae of S. ratti was used to immunize BALB/c mice and subsequent fusion of the B-cells with myeloma cells (SP2/0) using 50% PEG. The hybridomas were cultured in HAT medium and cloned by limiting dilutions. Positive hybrids were screened by indirect ELISA. The ascites fluid from the antibody-secreting hybridoma was purified and the MAb was characterized by western-blots and evaluated in sandwich ELISA for reactivity against the homologous and heterologous antigens.
Results: An IgG1 that recognizes a 30 and 34 kDa protein bands was obtained. The MAb was recognized by all S. ratti-related antigens and cross-reacted with only Toxocara canis antigens in both assays. The minimum antigen detection limit was found to be 5 ng/ml. All antibody-positive rat and dog sera evaluated have shown antigen-positive reactions in Sandwich-ELISA.
Conclusion: The MAb produced, was able to detect antigens in strongyloidiasis and toxocariasis in animal models and may also be useful for the serological detection of active strongyloidiasis and visceral toxocariasis in human sera.
METHODS: The dengue infection in mouse model was established by inoculation of non-mouse adapted New Guinea C strain dengue virus (DEN-2) in AG129 mice. The freeze-dried CPLJ compounds were identified by Ultra-High Performance Liquid Chromatography High Resolution Accurate Mass Spectrometry analysis. The infected AG129 mice were orally treated with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ, starting on day 1 post infection for 3 consecutive days. The blood samples were collected from submandibular vein for plasma NS1 assay and quantitation of viral RNA level by quantitative reverse transcription PCR.
RESULTS: The AG129 mice infected with dengue virus showed marked increase in the production of plasma NS1, which was detectable on day 1 post infection, peaked on day 3 post-infection and started to decline from day 5 post infection. The infection also caused splenomegaly. Twenty-four compounds were identified in the freeze-dried CPLJ. Oral treatment with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ did not affect the plasma NS1 and dengue viral RNA levels. However, the morbidity level of infected AG129 mice were slightly decreased when treated with freeze-dried CPLJ.
CONCLUSION: Oral treatment of 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ at the onset of viremia did not affect the plasma NS1 and viral RNA levels in AG129 mice infected with non-mouse adapted New Guinea C strain dengue virus.
METHODS: The AG129 mice were fed orally with FCPLJ for 3 consecutive days after 24 h of dengue virus inoculation. Plasma cytokines were screened by using ProcartaPlex immunoassay. The gene expression in the liver was analyzed by using RT2 Profiler PCR Array.
RESULTS: The results showed that FCPLJ treatment has increased the plasma CCL2/MCP-1 level during peak of viremia. Gene expression study has identified 8 inflammatory cytokine genes which were downregulated in the liver of infected AG129 mice treated with FCPLJ. The downregulated inflammatory cytokine genes were CCL6/MRP-1, CCL8/MCP-2, CCL12/MCP-5, CCL17/TARC, IL1R1, IL1RN/IL1Ra, NAMPT/PBEF1 and PF4/CXCL4.
CONCLUSION: The findings indicated the possible immunomodulatory role of FCPLJ during dengue virus infection in AG129 mice.
MATERIALS AND METHODS: 21 day postnatal male Sprague Dawley rats were assigned as Normal control [NC] fed normal chow diet, Obesity-induced [OB] fed high fat diet, Obesity-induced fed choline & DHA [OB + CHO + DHA], Obesity-induced environmental enrichment [OB + EE] [n = 8/group]. Memory was assessed using radial arm maze. Subsequently blood was collected for serum lipid analysis and rats were euthanized. 5 µm hippocampal sections were processed for cresyl-violet stain. Surviving neural cells were counted using 100 µm scale.
RESULTS: Memory errors were significantly higher [p
RECENT FINDINGS: Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis.
CONCLUSION: The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.