Displaying publications 401 - 420 of 712 in total

Abstract:
Sort:
  1. Teo WFA, Devaraj K, Nor MNM, Li WJ, Tan GYA
    Curr Microbiol, 2024 Mar 29;81(5):124.
    PMID: 38551738 DOI: 10.1007/s00284-024-03634-8
    In this study, we employed a polyphasic approach to determine the taxonomic position of a newly isolated actinomycete, designated SE31T, obtained from a sediment sample collected at Cape Rochado, Malaysia. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain SE31T belonged to the family Pseudonocardiaceae and exhibited the highest sequence similarity (98.9%) to Sciscionella marina. Further genomic analysis demonstrated a 93.4% average nucleotide identity and 54.4% digital DNA-DNA hybridization relatedness between strain SE31T and S. marina. The chemotaxonomic characteristics of strain SE31T were typical of the genus Sciscionella, including cell-wall chemotype IV (with meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as whole-cell sugars). The identified polar lipids of strain SE31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, and hydroxyphosphatidymethylethanolamine. The primary menaquinone observed was MK-9(H4), and the major cellular fatty acid was iso-C16:0. The genomic DNA size of strain SE31T was determined to be 7.4 Mbp with a G+C content of 68.7%. Based on these comprehensive findings, strain SE31T represents a novel species within the genus Sciscionella, in which the name Sciscionella sediminilitoris sp. nov. is proposed. The type strain of Sciscionella sediminilitoris is SE31T (= DSM 46824T = TBRC 5134T).
    Matched MeSH terms: Fatty Acids/chemistry
  2. Zain NA, Kahar P, Sudesh K, Ogino C, Kondo A
    J Biosci Bioeng, 2024 Aug;138(2):153-162.
    PMID: 38777650 DOI: 10.1016/j.jbiosc.2024.04.005
    Only a few reports available about the assimilation of hydrophobic or oil-based feedstock as carbon sources by Lipomyces starkeyi. In this study, the ability of L. starkeyi to efficiently utilize free fatty acids (FFAs) and real biomass like palm acid oil (PAO) as well as crude palm kernel oil (CPKO) for growth and lipid production was investigated. PAO, CPKO, and FFAs were evaluated as sole carbon sources or in the mixed medium containing glucose. L. starkeyi was able to grow on the medium supplemented with PAO and FFAs, which contained long-chain length FAs and accumulated lipids up to 35% (w/w) of its dry cell weight. The highest lipid content and lipid concentration were achieved at 50% (w/w) and 10.1 g/L, respectively, when L. starkeyi was cultured in nitrogen-limited mineral medium (-NMM) supplemented with PAO emulsion. Hydrophobic substrate like PAO could be served as promising carbon source for L. starkeyi.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism
  3. Mei Y, Hu H, Deng L, Sun X, Tan W
    Sci Rep, 2022 Jul 27;12(1):12857.
    PMID: 35896572 DOI: 10.1038/s41598-022-16119-0
    Isosteviol sodium (STVNa) is a beyerane diterpene synthesized via acid hydrolysis of stevioside, which can improve glucose and lipid metabolism in animals with diabetes. However, it remains unknown whether STVNa can exhibit a therapeutic effect on nonalcoholic fatty liver disease (NAFLD) and its underlying mechanism. We hypothesize that autophagic initiation may play a key role in mediating the development of NAFLD. Herein, we assessed the effects of STVNa on NAFLD and its underlying mechanisms. The results demonstrated that STVNa treatment effectively ameliorated NAFLD in rats fed high-fat diet (HFD). Moreover, STVNa decreased the expression of inflammation-related genes and maintained a balance of pro-inflammatory cytokines in NAFLD rats. STVNa also reduced lipid accumulation in free fatty acid (FFA)-exposed LO2 cells. In addition, STVNa attenuated hepatic oxidative stress and fibrosis in NAFLD rats. Furthermore, STVNa enhanced autophagy and activated Sirtuin 1/adenosine monophosphate-activated protein kinase (Sirt1/AMPK) pathway both in vivo and in vitro, thus attenuating intracellular lipid accumulation. In summary, STVNa could improve lipid metabolism in NAFLD by initiating autophagy via Sirt1/AMPK pathway. Therefore, STVNa may be an alternative therapeutic agent for treatment of NAFLD.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism
  4. Li Y, Sun M, Tian X, Bao T, Yu Q, Ma NL, et al.
    J Nutr Biochem, 2024 Nov;133:109709.
    PMID: 39053860 DOI: 10.1016/j.jnutbio.2024.109709
    Gut microbiota dysbiosis and gut barrier disruption are key events associated with high-fat diet (HFD)-induced systemic metabolic disorders. Gymnemic acid (GA) has been reported to have an important role in alleviating HFD-induced disorders of glycolipid metabolism, but its regulatory role in HFD-induced disorders of the gut microbiota and gut barrier function has not been elucidated. Here we showed that GA intervention in HFD-induced hamsters increased the relative abundance of short-chain fatty acid (SCFA)-producing microbes including Lactobacillus (P
    Matched MeSH terms: Fatty Acids, Volatile/metabolism
  5. Tay ST, Lim SL, Tan HW
    PMID: 25380692 DOI: 10.1186/1472-6882-14-439
    The increasing resistance of Candida yeasts towards antifungal compounds and the limited choice of therapeutic drugs have spurred great interest amongst the scientific community to search for alternative anti-Candida compounds. Mycocins and fungal metabolites have been reported to have the potential for treatment of fungal infections. In this study, the growth inhibition of Candida species by a mycocin produced by Wickerhamomyces anomalus and a lactone compound from Aureobasidium pullulans were investigated.
    Matched MeSH terms: Fatty Acids, Monounsaturated/isolation & purification; Fatty Acids, Monounsaturated/pharmacology*
  6. Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS
    Phytochemistry, 2015 Mar;111:65-71.
    PMID: 25583439 DOI: 10.1016/j.phytochem.2014.12.022
    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.
    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids/biosynthesis*
  7. Hafandi A, Begg DP, Premaratna SD, Sinclair AJ, Jois M, Weisinger RS
    Comp. Med., 2014 Apr;64(2):106-9.
    PMID: 24674584
    Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.
    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage; Fatty Acids, Omega-3/pharmacology*
  8. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
    Matched MeSH terms: Fatty Acids, Unsaturated/biosynthesis*; Fatty Acids, Unsaturated/metabolism
  9. Yashodhara BM, Umakanth S, Pappachan JM, Bhat SK, Kamath R, Choo BH
    Postgrad Med J, 2009 Feb;85(1000):84-90.
    PMID: 19329703 DOI: 10.1136/pgmj.2008.073338
    Omega-3 fatty acids (omega-3 FAs) are essential fatty acids with diverse biological effects in human health and disease. Reduced cardiovascular morbidity and mortality is a well-established benefit of their intake. Dietary supplementation may also benefit patients with dyslipidaemia, atherosclerosis, hypertension, diabetes mellitus, metabolic syndrome, obesity, inflammatory diseases, neurological/ neuropsychiatric disorders and eye diseases. Consumption of omega-3 FAs during pregnancy reduces the risk of premature birth and improves intellectual development of the fetus. Fish, fish oils and some vegetable oils are rich sources of omega-3 FAs. According to the UK Scientific Advisory Committee on Nutrition guidelines (2004), a healthy adult should consume a minimum of two portions of fish a week to obtain the health benefit. This review outlines the health implications, dietary sources, deficiency states and recommended allowances of omega-3 FAs in relation to human nutrition.
    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage; Fatty Acids, Omega-3/pharmacology*
  10. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2013 Jan 15;18(1):997-1014.
    PMID: 23322066 DOI: 10.3390/molecules18010997
    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.
    Matched MeSH terms: Fatty Acids/isolation & purification*; Fatty Acids/chemistry
  11. Jafari S, Meng GY, Rajion MA, Jahromi MF, Ebrahimi M
    J Agric Food Chem, 2016 Jun 08;64(22):4522-30.
    PMID: 27192629 DOI: 10.1021/acs.jafc.6b00846
    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.
    Matched MeSH terms: Fatty Acids, Unsaturated/metabolism*; Fatty Acids, Unsaturated/chemistry
  12. Sundram K, Ismail A, Hayes KC, Jeyamalar R, Pathmanathan R
    J Nutr, 1997 Mar;127(3):514S-520S.
    PMID: 9082038
    Although dietary trans fatty acids can affect plasma lipoproteins negatively in humans, no direct comparison with specific saturated fatty acids has been reported, even though trans fatty acids were designed to replace saturates in foods and food processing. In this study, dietary trans 18:1 [elaidic acid at 5.5% energy (en)] was specifically exchanged for cis 18:1, 16:0 or 12:0 + 14:0 in 27 male and female subjects consuming moderate fat (31% en), low cholesterol (<225 mg/d) whole food diets during 4-wk diet periods in a crossover design. The trans-rich fat significantly elevated total cholesterol and LDL cholesterol relative to the 16:0-rich and 18:1-rich fats and uniquely depressed HDL cholesterol relative to all of the fats tested. Trans fatty acids also elevated lipoprotein (a) [Lp(a)] values relative to all dietary treatments. Furthermore, identical effects on lipoproteins were elicited by 16:0 and cis 18:1 in these subjects. The current results suggest that elaidic acid, one of the principal trans isomers produced during industrial hydrogenation of edible oils, adversely affects plasma lipoproteins. Thus, the negative effect of elaidic acid on the lipoprotein profile of humans appears to be unmatched by any other natural fatty acid(s).
    Matched MeSH terms: Fatty Acids/administration & dosage; Fatty Acids/chemistry
  13. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids/metabolism
  14. Khor GL, Lee SS
    Nutrients, 2021 Jul 09;13(7).
    PMID: 34371864 DOI: 10.3390/nu13072354
    This study determined the intakes of complementary foods (CFs) and milk-based formulas (MFs) by a total of 119 subjects aged 6-23.9 months from urban day care centers. Dietary intakes were assessed using two-day weighed food records. Intake adequacy of energy and nutrients was compared to the Recommended Nutrient Intakes (RNI) for Malaysia. The most commonly consumed CFs were cereals (rice, noodles, bread). The subjects derived approximately half of their energy requirements (kcals) from CFs (57 ± 35%) and MFs (56 ± 31%). Protein intake was in excess of their RNI requirements, from both CFs (145 ± 72%) and MFs (133 ± 88%). Main sources of protein included meat, dairy products, and western fast food. Intake of CFs provided less than the RNI requirements for vitamin A, thiamine, riboflavin, folate, vitamin C, calcium, iron, and zinc. Neither CF nor MF intake met the Adequate Intake (AI) requirements for essential fatty acids. These findings indicate imbalances in the dietary intake of the subjects that may have adverse health implications, including increased risk of rapid weight gain from excess protein intake, and linear growth faltering and intellectual impairment from multiple micronutrient deficiencies. Interventions are needed to improve child feeding knowledge and practices among parents and child care providers.
    Matched MeSH terms: Fatty Acids, Essential/analysis*; Fatty Acids, Essential/deficiency
  15. Mohan D, Mente A, Dehghan M, Rangarajan S, O'Donnell M, Hu W, et al.
    JAMA Intern Med, 2021 05 01;181(5):631-649.
    PMID: 33683310 DOI: 10.1001/jamainternmed.2021.0036
    Importance: Cohort studies report inconsistent associations between fish consumption, a major source of long-chain ω-3 fatty acids, and risk of cardiovascular disease (CVD) and mortality. Whether the associations vary between those with and those without vascular disease is unknown.

    Objective: To examine whether the associations of fish consumption with risk of CVD or of mortality differ between individuals with and individuals without vascular disease.

    Design, Setting, and Participants: This pooled analysis of individual participant data involved 191 558 individuals from 4 cohort studies-147 645 individuals (139 827 without CVD and 7818 with CVD) from 21 countries in the Prospective Urban Rural Epidemiology (PURE) study and 43 413 patients with vascular disease in 3 prospective studies from 40 countries. Adjusted hazard ratios (HRs) were calculated by multilevel Cox regression separately within each study and then pooled using random-effects meta-analysis. This analysis was conducted from January to June 2020.

    Exposures: Fish consumption was recorded using validated food frequency questionnaires. In 1 of the cohorts with vascular disease, a separate qualitative food frequency questionnaire was used to assess intake of individual types of fish.

    Main Outcomes and Measures: Mortality and major CVD events (including myocardial infarction, stroke, congestive heart failure, or sudden death).

    Results: Overall, 191 558 participants with a mean (SD) age of 54.1 (8.0) years (91 666 [47.9%] male) were included in the present analysis. During 9.1 years of follow-up in PURE, compared with little or no fish intake (≤50 g/mo), an intake of 350 g/wk or more was not associated with risk of major CVD (HR, 0.95; 95% CI, 0.86-1.04) or total mortality (HR, 0.96; 0.88-1.05). By contrast, in the 3 cohorts of patients with vascular disease, the HR for risk of major CVD (HR, 0.84; 95% CI, 0.73-0.96) and total mortality (HR, 0.82; 95% CI, 0.74-0.91) was lowest with intakes of at least 175 g/wk (or approximately 2 servings/wk) compared with 50 g/mo or lower, with no further apparent decrease in HR with consumption of 350 g/wk or higher. Fish with higher amounts of ω-3 fatty acids were strongly associated with a lower risk of CVD (HR, 0.94; 95% CI, 0.92-0.97 per 5-g increment of intake), whereas other fish were neutral (collected in 1 cohort of patients with vascular disease). The association between fish intake and each outcome varied by CVD status, with a lower risk found among patients with vascular disease but not in general populations (for major CVD, I2 = 82.6 [P = .02]; for death, I2 = 90.8 [P = .001]).

    Conclusions and Relevance: Findings of this pooled analysis of 4 cohort studies indicated that a minimal fish intake of 175 g (approximately 2 servings) weekly is associated with lower risk of major CVD and mortality among patients with prior CVD but not in general populations. The consumption of fish (especially oily fish) should be evaluated in randomized trials of clinical outcomes among people with vascular disease.

    Matched MeSH terms: Fatty Acids, Omega-3/metabolism; Fatty Acids, Omega-3/therapeutic use
  16. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al.
    PLoS One, 2017;12(10):e0186546.
    PMID: 29028844 DOI: 10.1371/journal.pone.0186546
    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
    Matched MeSH terms: Fatty Acids/biosynthesis; Fatty Acids/chemistry
  17. Kuah MK, Jaya-Ram A, Shu-Chien AC
    PMID: 27421235 DOI: 10.1016/j.cbpa.2016.07.007
    There is a lack of understanding on how the environment and trophic niche affect the capability of long-chain polyunsaturated fatty acids (LC-PUFA) in freshwater carnivorous teleost. In this present study, we isolated and functionally characterised a fatty acyl desaturase (Fads) from the striped snakehead Channa striata. Sequence comparison and phylogenetic analysis suggested a Fads2 protein that is closely related to previously characterised Fads2 proteins from freshwater carnivorous and marine herbivorous fish species. We further demonstrated the capacity of Δ6 and Δ5 desaturation activities for this particular desaturase, with highest activities towards the conversion of omega-3 (n-3) polyunsaturated fatty acids (PUFA). Low Δ4 desaturation activity was also detected, although the significance of this at a physiological level remains to be studied. The expression of this striped snakehead Δ6/Δ5 fads2 gene was highest in brain, followed by liver and intestine. In liver, diet fortified with high LC-PUFA concentration impeded the expression of Δ6/Δ5 fads2 gene compared to vegetable oil (VO) based diets. The discovery of Δ6/Δ5 Fads2 desaturase here complements the previous discovery of a Δ4 Fads2 desaturase and an Elovl5 elongase, lending proof to the existence of all the required enzymatic machinery to biosynthesise LC-PUFA from C18 PUFA in a freshwater carnivorous species.
    Matched MeSH terms: Fatty Acids, Unsaturated/administration & dosage; Fatty Acids, Unsaturated/metabolism
  18. Asadpour R, Sapari NB, Isa MH, Orji KU
    Water Sci Technol, 2014 10 18;70(7):1220-8.
    PMID: 25325547 DOI: 10.2166/wst.2014.355
    Oil spills generally cause worldwide concern due to their detrimental effects on the environment and the economy. An assortment of commercial systems has been developed to control these spills, including the use of agricultural wastes as sorbents. This work deals with raw and modified mangrove barks (Rhizophora apiculata), an industrial lignocellulosic waste, as a low cost adsorbent for oil-product-spill cleanup in the aquatic environment. Mangrove bark was modified using fatty acids (oleic acid and palmitic acid) to improve its adsorption capacity. The oil sorption capacity of the modified bark was studied and compared with that of the raw bark. Kinetic tests were conducted with a series of contact times. The influence of particle size, oil dosage, pH and temperature on oil sorption capacity was investigated. The results showed that oleic acid treated bark has a higher sorption capacity (2,860.00 ± 2.00 mg/g) than untreated bark for Tapis crude oil. A correlation between surface functional groups, morphology and surface area of the adsorbent was studied by Fourier transform infrared spectrum, field emission scanning electron microscopy images and Brunauer-Emmett-Teller analysis. Isotherm study was conducted using the Langmuir and Freundlich isotherm models. The result showed that adsorption of crude oil on treated mangrove bark could be best described by the Langmuir model.
    Matched MeSH terms: Fatty Acids
  19. Maroufyan E, Kasim A, Yong Meng G, Ebrahimi M, Teck Chwen L, Mehrbod P, et al.
    ScientificWorldJournal, 2013;2013:531397.
    PMID: 24198724 DOI: 10.1155/2013/531397
    This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN- γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN- γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens.
    Matched MeSH terms: Fatty Acids/blood; Fatty Acids, Omega-3/administration & dosage
  20. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids/metabolism*; Fatty Acids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links