Displaying publications 421 - 440 of 624 in total

Abstract:
Sort:
  1. Arifin MH, Kayode JS, Ismail KI, Abdullah M, Embrandiri A, Nazer SM, et al.
    Data Brief, 2020 Dec;33:106595.
    PMID: 33318980 DOI: 10.1016/j.dib.2020.106595
    Industrial, and municipal wastes are part of the main sources of environmental hazards as well as groundwater and surface water pollutions. If not well composed, treated, and safely disposed, it could permeate through the subsurface lithologies by reaching down to the underground water aquifers, particularly in zones of unprotected aquifer units. Pollutants, most especially the landfills leachates that encompassed organic contaminants, ammonia, nitrates, total nitrogen, suspended solids, heavy metals and soluble inorganic salts, i.e., soluble nitrogen, sulphur compound, sulphate and chlorides, could posed undesirable environmental impacts due to inappropriate disposals that may give rise to gaseous fumes and leachate formations. An electrical resistivity geophysical technique utilizing the RES2D no-invasive, cost-effective and rapid method of data collection was integrated with the 3D Oasis Montaj software to approximate the volume of the generated rectangular prism model of the contaminants delineated from mixtures of the industrial, and municipal wastes plumes to be 312,000 m 3.
    Matched MeSH terms: Nitrogen
  2. Lyn CW, Bashir MJ, Wong LY, Lim JW, Sethupathi S, Ng CA
    Chemosphere, 2020 Nov 25.
    PMID: 33276996 DOI: 10.1016/j.chemosphere.2020.129050
    Domestic wastewater has been generated massively along with rapid growth of population and economic. Biological treatment using sequencing batch reactor (SBR) augmented with palm oil fuel ash (POFA) was investigated for the first time. The performance of POFA in enhancing biological treatment of wastewater has not been tested. The porosity property of POFA can improve SBR efficiency by promoting growth of mixed liquor suspended solids (MLSS) and formation of larger flocs for settling and facilitating attachment of microorganisms and pollutants onto POFA surfaces. The properties of POFA were tested to identify morphological properties, particle size, surface area, chemical compositions. Four SBRs, namely SBR1, SBR2, SBR3 and SBR4 were provided with aeration rate of 1, 2, 3 and 4 L/min, respectively. Each reactor was augmented with different dosages of POFA. Optimum aeration rate and POFA concentration were identified by the performance of SBRs in removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and colour from domestic wastewater. The results showed the most efficient COD (97.8%), NH3-N (99.4%) and colour (98.8%) removals were achieved at optimum POFA concentration of 4 g/L in SBR and aeration rate of 1 L/min. The study also found that higher aeration rate would contribute to the smaller specific size of flocs and decrease the pollutant removal efficiency.
    Matched MeSH terms: Nitrogen
  3. Reza MS, Ahmed A, Caesarendra W, Abu Bakar MS, Shams S, Saidur R, et al.
    Bioengineering (Basel), 2019 Apr 16;6(2).
    PMID: 30995765 DOI: 10.3390/bioengineering6020033
    To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C-H, C-O, and C=C bond exists in the bio-char of the sample.
    Matched MeSH terms: Nitrogen
  4. Yusof ENM, Latif MAM, Tahir MIM, Sakoff JA, Simone MI, Page AJ, et al.
    Int J Mol Sci, 2019 Feb 15;20(4).
    PMID: 30781445 DOI: 10.3390/ijms20040854
    Six new organotin(IV) compounds of Schiff bases derived from S-R-dithiocarbazate [R = benzyl (B), 2- or 4-methylbenzyl (2M and 4M, respectively)] condensed with 2-hydroxy-3-methoxybenzaldehyde (oVa) were synthesised and characterised by elemental analysis, various spectroscopic techniques including infrared, UV-vis, multinuclear (¹H, 13C, 119Sn) NMR and mass spectrometry, and single crystal X-ray diffraction. The organotin(IV) compounds were synthesised from the reaction of Ph₂SnCl₂ or Me₂SnCl₂ with the Schiff bases (S2MoVaH/S4MoVaH/SBoVaH) to form a total of six new organotin(IV) compounds that had a general formula of [R₂Sn(L)] (where L = Schiff base; R = Ph or Me). The molecular geometries of Me₂Sn(S2MoVa), Me₂Sn(S4MoVa) and Me₂Sn(SBoVa) were established by X-ray crystallography and verified using density functional theory calculations. Interestingly, each experimental structure contained two independent but chemically similar molecules in the crystallographic asymmetric unit. The coordination geometry for each molecule was defined by thiolate-sulphur, phenoxide-oxygen and imine-nitrogen atoms derived from a dinegative, tridentate dithiocarbazate ligand with the remaining positions occupied by the methyl-carbon atoms of the organo groups. In each case, the resulting five-coordinate C₂NOS geometry was almost exactly intermediate between ideal trigonal-bipyramidal and square-pyramidal geometries. The cytotoxic activities of the Schiff bases and organotin(IV) compounds were investigated against EJ-28 and RT-112 (bladder), HT29 (colon), U87 and SJ-G2 (glioblastoma), MCF-7 (breast) A2780 (ovarian), H460 (lung), A431 (skin), DU145 (prostate), BE2-C (neuroblastoma) and MIA (pancreatic) cancer cell lines and one normal breast cell line (MCF-10A). Diphenyltin(IV) compounds exhibited greater potency than either the Schiff bases or the respective dimethyltin(IV) compounds. Mechanistic studies on the action of these compounds against bladder cancer cells revealed that they induced the production of reactive oxygen species (ROS). The bladder cancer cells were apoptotic after 24 h post-treatment with the diphenyltin(IV) compounds. The interactions of the organotin(IV) compounds with calf thymus DNA (CT-DNA) were experimentally explored using UV-vis absorption spectroscopy. This study revealed that the organotin(IV) compounds have strong DNA binding affinity, verified via molecular docking simulations, which suggests that these organotin(IV) compounds interact with DNA via groove-binding interactions.
    Matched MeSH terms: Nitrogen
  5. Shi X, Karachi A, Hosseini M, Yazd MS, Kamyab H, Ebrahimi M, et al.
    Ultrason Sonochem, 2020 Nov;68:104460.
    PMID: 30712851 DOI: 10.1016/j.ultsonch.2019.01.018
    The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g- of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.
    Matched MeSH terms: Nitrogen Compounds
  6. Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, et al.
    Sci Total Environ, 2019 Jun 20;670:1060-1067.
    PMID: 31018421 DOI: 10.1016/j.scitotenv.2019.03.245
    With the population growth, urbanization and industrialization, China has become a hotspot of atmospheric deposition nitrogen (ADN), which is a threat to ecosystem and food safety. However, the impacts of increased ADN on rice growth and grain metal content are little studied. Based on previous long-term ADN studies, greenhouse experiment was conducted with four simulated ADN rates of 0, 30, 60 and 90 kg N ha-1 yr-1 (CK, N1, N2 and N3 as δ15N, respectively) to assess rice growth and metal uptake in a red soil ecosystem of southeast China during 2016-2017. Results showed that simulated ADN could promote rice growth and increase yields by 15.68-24.41% (except N2) and accumulations of cadmium (Cd) or copper (Cu) in organs. However, there was no linear relationship between ADN rate and rice growth or Cd or Cu uptake. The 15N-ADN was mainly accumulated in roots (21.31-67.86%) and grains (25.26-49.35%), while Cd and Cu were primarily accumulated in roots (78.86-93.44% and 90.00-96.24%, respectively). 15N-ADN and Cd accumulations in roots were significantly different between the two growing seasons (p 
    Matched MeSH terms: Nitrogen
  7. Ghosh S, Lahiri D, Nag M, Dey A, Sarkar T, Pathak SK, et al.
    Polymers (Basel), 2021 Apr 12;13(8).
    PMID: 33921239 DOI: 10.3390/polym13081242
    Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
    Matched MeSH terms: Nitrogen
  8. Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA
    PLoS One, 2020;15(7):e0232860.
    PMID: 32645001 DOI: 10.1371/journal.pone.0232860
    Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
    Matched MeSH terms: Nitrogen
  9. Arumugam K, Ahmad MF, Yaacob NS, Ikram WM, Maniyam MN, Abdullah H, et al.
    Heliyon, 2020 Jul;6(7):e04556.
    PMID: 32775725 DOI: 10.1016/j.heliyon.2020.e04556
    Natural growth-promoting nutrients extracted from aquaculture sludge waste can be used to maximise microalgal growth. This study identified the influence of aquaculture sludge extract (SE) on four microalgae species. Conway or Bold's Basal Media (BBM) was supplemented with SE collected from a Sabak Bernam shrimp pond (SB) and Kota Puteri fish pond (KP), and tested using a novel microplate-incubation technique. Five different autoclave extraction treatment parameters were assessed for both collected SE, i.e., 1-h at 105 °C, 2-h at 105 °C, 1-h at 121 °C, 2-h at 121 °C, and 24-h at room temperature (natural extraction). Microalgae culture in the microplates containing control (media) and enriched (media + SE) samples were incubated for nine days, at 25 °C with the light intensity of 33.75 μmol photons m-2 s-1 at 12-h light/dark cycle. The total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) in KP SE were 44.0-82.0 mg L-1 and 0.96-8.60 mg L-1. TDN (8.0%-515.0%) and TDP (105%-186 %) were relatively higher in KP SE compared to SB SE. The growth of microalgae species Nannochloropsis ocenica showed significant differences (p < 0.05) between the five extraction treatments from SB and the control. However, Chlorella vulgaris, Neochloris conjuncta, and Nephroclamys subsolitaria showed no significant differences (p > 0.05) in SB SE. N. ocenica, C. vulgaris, and N. conjuncta showed significant differences (p < 0.05) between five extraction treatments from KP and the control while N. subsolitaria showed no significant difference (p > 0.05). The specific growth rate (SGR) in the exponential phase of all microalgae species were relatively higher in SB SE compared to KP SE. While the organic matter content of KP SE was relatively higher, there were no significant differences in microalgae growth compared to SB SE. Nonetheless, modified SE did influence microalgae growth compared to the control. This study shows that modified SE could be used as enrichment media for microalgae cultivation.
    Matched MeSH terms: Nitrogen
  10. Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, et al.
    Sci Total Environ, 2020 Nov 10;742:140288.
    PMID: 32721711 DOI: 10.1016/j.scitotenv.2020.140288
    Air pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages. We identified information about the locations, causes, periods, and tree species exhibiting decline. Past air pollution was also reviewed. Most East Asian countries show declining trends in SO2 concentration in recent years, although Mongolia and Russia show increasing trends. Ozone (O3) concentrations are stable or gradually increasing in the East Asia region, with high maxima. Wet nitrogen (N) deposition was high in China and tropical countries, but low in Russia. The decline of trees and forests primarily occurred in the mid-latitudes of Japan, Korea, China, and Russia. Long-term large N deposition resulted in the N saturation phenomenon in Japan and China, but no clear forest health response was observed. Thereafter, forest decline symptoms, suspected to be caused by O3, were observed in Japan and China. In East Russia, tree decline occurred around industrial centers in Siberia. Haze events have been increasing in tropical and boreal forests, and particulate matter inhibits photosynthesis. In recent years, chronically high O3 concentrations, in conjunction with climate change, are likely have adverse effects on tree physiology. The effects of air pollution and related factors on tree decline are summarized. Recently, the effects of air pollution on tree decline have not been apparent under the changing climate, however, monitoring air pollution is indispensable for identifying the cause of tree decline. Further economic growth is projected in Southeast Asia and therefore, the monitoring network should be expanded to tropical and boreal forest zones. Countermeasures such as restoring urban trees and rural forests are important for ensuring future ecosystem services.
    Matched MeSH terms: Nitrogen
  11. Dhandapani S, Evers S
    Sci Total Environ, 2020 Nov 10;742:140648.
    PMID: 32721749 DOI: 10.1016/j.scitotenv.2020.140648
    Fire is one of the major issues facing Southeast Asian peatlands causing socio-economic, human health and climate crises. Many of these fires in the region are associated with land clearing or management practices for oil palm plantations. Here we study the direct post-fire impacts of slash-and-burn oil palm agriculture on greenhouse gas emissions, peat physico-chemical properties and nutrient concentrations. Greenhouse gas (GHG) emissions were measured using Los Gatos ultraportable greenhouse gas analyser one month after a fire in dry season and five months after the fire event, in wet season. Surface soil samples were collected from each individual GHG measurement points, along with 50 cm cores from both burnt and non-burnt control areas for lab analyses. As an immediate post-fire impact, carbon dioxide (CO2) and methane (CH4) emissions, pH, electrical conductivity, and all macronutrient concentrations except nitrogen (N) were increased multi-fold, while the redox potential, carbon (C) and N content were greatly reduced in the burnt region. While some of the properties such as CO2 emissions, and electrical conductivity reverted to normal after five months, other properties such as CH4 emissions, pH and nutrient concentrations remained high in the burnt region. This study also found very high loss of surface peat C content in the burnt region post fire, which is irreversible. The results also show that surface peat layers up to 20 cm depth were affected the most by slash-and-burn activity in oil palm agriculture, however the intensity of fire can vary widely between different oil palm management and needs further research to fully understand the long term and regional impacts of such slash-and-burn activity in tropical peatlands.
    Matched MeSH terms: Nitrogen
  12. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Nitrogen
  13. Van Tung T, Tran QB, Phuong Thao NT, Vi LQ, Hieu TT, Le S, et al.
    Chemosphere, 2020 Dec 15;268:129329.
    PMID: 33360937 DOI: 10.1016/j.chemosphere.2020.129329
    This study develops a method to reuse aquaculture wastewater and sediment from a catfish pond in order to increase agricultural productivity and protect the environment. Material flow analysis (MFA) is a central concept of this study that involves collecting catfish pond wastewater (CPW) and reusing it to irrigate five water spinach (Ipomoea aquatic) ponds before discharging it into a river. Typically, catfish pond sediment (CPS) was collected and composted to produce organic fertilizer for cornfields. The results revealed that pollutant removal efficiency of wastewater from CPW (by using water spinach) were total organic carbon (TOC) = 38.78%, nitrogen (N) = 27.07%, phosphorous (P) = 58.42%, and potassium (K) = 28.64%. By adding 20 tons of CPS compost per hectare of the cornfield, the corn yield boosted 15% compared to the control field. In addition, the water spinach grew and developed well in the medium of wastewater from the fish pond. Altogether, the results illustrate that catfish pond wastewater and sediment can act as organic fertilizers for crops meanwhile reduce environmental pollution from its reuse.
    Matched MeSH terms: Nitrogen
  14. Chanasit W, Hodgson B, Sudesh K, Umsakul K
    Biosci Biotechnol Biochem, 2016 Jul;80(7):1440-50.
    PMID: 26981955 DOI: 10.1080/09168451.2016.1158628
    Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species.
    Matched MeSH terms: Nitrogen
  15. Jamain Z, Khairuddean M, Guan-Seng T
    Int J Mol Sci, 2020 Jun 16;21(12).
    PMID: 32560033 DOI: 10.3390/ijms21124267
    Two series of new hexasubstituted cyclotriphosphazene derivatives were successfully synthesized and characterized. These derivatives are differentiated by two types of linking units in the molecules such as amide-azo (6a-j) and azo-azo (8a-j). The homologues of the same series contain different terminal substituents such as heptyl, nonyl, decyl, dodecyl, tetradecyl, hydroxyl, carboxyl, chloro, nitro, and amino groups. All the intermediates and final compounds were characterized using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and Carbon, Hydrogen, and Nitrogen (CHN) elemental analysis. Liquid crystal properties for all compounds were determined using polarized optical microscope (POM). It was found that only intermediates 2a-e with nitro and alkoxyl terminal chains showed a smectic A phase. All the final compounds with alkoxyl substituents are mesogenic with either smectic A or C phases. However, other intermediates and compounds were found to be non-mesogenic. The study on the fire retardancy of final compounds was determined using limiting oxygen index (LOI) method. The LOI value of pure polyester resin (22.53%) was increased up to 24.71% after treating with 1 wt% of hexachlorocyclotriphosphazene (HCCP). Moreover, all the compounds gave positive results on the LOI values and compound 6i with the nitro terminal substituent showed the highest LOI value of 27.54%.
    Matched MeSH terms: Nitrogen
  16. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
    Matched MeSH terms: Nitrogen
  17. Sahruzaini NA, Rejab NA, Harikrishna JA, Khairul Ikram NK, Ismail I, Kugan HM, et al.
    Front Plant Sci, 2020;11:531.
    PMID: 32431724 DOI: 10.3389/fpls.2020.00531
    The last decade has witnessed dramatic changes in global food consumption patterns mainly because of population growth and economic development. Food substitutions for healthier eating, such as swapping regular servings of meat for protein-rich crops, is an emerging diet trend that may shape the future of food systems and the environment worldwide. To meet the erratic consumer demand in a rapidly changing world where resources become increasingly scarce due largely to anthropogenic activity, the need to develop crops that benefit both human health and the environment has become urgent. Legumes are often considered to be affordable plant-based sources of dietary proteins. Growing legumes provides significant benefits to cropping systems and the environment because of their natural ability to perform symbiotic nitrogen fixation, which enhances both soil fertility and water-use efficiency. In recent years, the focus in legume research has seen a transition from merely improving economically important species such as soybeans to increasingly turning attention to some promising underutilized species whose genetic resources hold the potential to address global challenges such as food security and climate change. Pulse crops have gained in popularity as an affordable source of food or feed; in fact, the United Nations designated 2016 as the International Year of Pulses, proclaiming their critical role in enhancing global food security. Given that many studies have been conducted on numerous underutilized pulse crops across the world, we provide a systematic review of the related literature to identify gaps and opportunities in pulse crop genetics research. We then discuss plausible strategies for developing and using pulse crops to strengthen food and nutrition security in the face of climate and anthropogenic changes.
    Matched MeSH terms: Nitrogen Fixation
  18. AIDA NADIA A.RAMLEE, WAN ZALIHA WAN SEMBOK
    MyJurnal
    Fresh-cut pineapple has experienced an increase in demand due to its great health benefits and is rich in vitamins A, B and C. Moreover, pineapple is known as a source of the enzyme bromelain, which has therapeutic applications, such as reducing inflammation, improving digestion and treating osteoarthritis. However, bromelain generally affects the pineapple’s flavour and is less preferred by consumers due to the uncomfortable prickling and tingling sensations it brings. In the present study, two types of gases and their combination, nitrogen (N2) and carbon dioxide (CO2), were used to evaluate their impacts on reducing the tingling and prickling sensations, as well as maintaining the postharvest qualities of fresh-cut pineapple stored at 5°C for 12 days. The parameters being evaluated were the bromelain enzyme activity, flesh colour, ascorbic acid concentration, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA) and sensory evaluation. No significant differences were recorded for all parameters tested. Based on the sensory evaluations, all the attributes, such as colour, aroma, texture, sweetness, sourness, tingling and prickling sensations, and overall acceptance were not affected by the different gases application. Even though no apparent effect was observed, the 30 panellists preferred the aforementioned attributes, except sourness. In conclusion, the fumigation treatments with N2 and CO2 gases were not effective in reducing the tingling and prickling sensations of pineapples cv. Morris.
    Matched MeSH terms: Nitrogen
  19. Pak HY, Chuah CJ, Yong EL, Snyder SA
    Sci Total Environ, 2021 Aug 01;780:146661.
    PMID: 34030308 DOI: 10.1016/j.scitotenv.2021.146661
    Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
    Matched MeSH terms: Nitrogen
  20. Razali MH, Noor AFM, Yusoff M
    J Nanosci Nanotechnol, 2020 02 01;20(2):965-972.
    PMID: 31383093 DOI: 10.1166/jnn.2020.16944
    In this study, a series of copper-ion-doped titanium dioxide (Cu-ion-doped TiO₂) nanotubes (NTs) were synthesized via a hydrothermal method by the concentration variation of doped Cu ions (0.00, 0.50, 1.00, 2.50, and 5.00 mmol). In addition, the samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen gas adsorption measurements, and ultraviolet-visible (UV-Vis) diffuse-reflectance spectroscopy. The photocatalytic activity of the Cu-iondoped TiO₂ NTs was investigated for the degradation of methyl orange (MO) under sunlight. The results obtained from the structural and morphological studies revealed that, at low concentrations of Cu-doped TiO₂ NTs, Cu is incorporated into the interstitial positions of the TiO₂ lattice, affording a new phase of TiO₂ (hexagonal) instead of the anatase TiO₂ (tetragonal) observed for undoped TiO₂ NTs. EDX analysis confirmed the presence of Cu in the TiO₂-based photocatalyst. All of the investigated samples exhibited a hollow fibrous-like structure, indicative of an NT morphology. The inner and outer diameters of the NTs were 4 nm and 10 nm, respectively. The photocatalysts exhibited a large surface area due to the NT morphology and a type IV isotherm and H3 hysteresis, corresponding to the mesopores and slit-shaped pores. The Cu-ion-doped TiO₂ NTs were excited by sunlight because of their low bandgap energy; and after the incorporation of Cu ions into the interstitial positions of the TiO₂ lattice, the NTs exhibited high visible-light activity owing to the low bandgap.
    Matched MeSH terms: Nitrogen
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links