Displaying publications 4481 - 4500 of 10390 in total

Abstract:
Sort:
  1. Shahar FS, Hameed Sultan MT, Lee SH, Jawaid M, Md Shah AU, Safri SNA, et al.
    J Mech Behav Biomed Mater, 2019 11;99:169-185.
    PMID: 31357064 DOI: 10.1016/j.jmbbm.2019.07.020
    Since ancient Egypt, orthosis was generally made from wood and then later replaced with metal and leather which are either heavy, bulky, or thick decreasing comfort among the wearers. After the age of revolution, the manufacturing of products using plastics and carbon composites started to spread due to its low cost and form-fitting feature whereas carbon composite were due to its high strength/stiffness to weight ratio. Both plastic and carbon composite has been widely applied into medical devices such as the orthosis and prosthesis. However, carbon composite is also quite expensive, making it the less likely material to be used as an Ankle-Foot Orthosis (AFO) material whereas plastics has low strength. Kenaf composite has a high potential in replacing all the current materials due to its flexibility in controlling the strength to weight ratio properties, cost-effectiveness, abundance of raw materials, and biocompatibility. The aim of this review paper is to discuss on the possibility of using kenaf composite as an alternative material to fabricate orthotics and prosthetics. The discussion will be on the development of orthosis since ancient Egypt until current era, the existing AFO materials, the problems caused by these materials, and the possibility of using a Kenaf fiber composite as a replacement of the current materials. The results show that Kenaf composite has the potential to be used for fabricating an AFO due to its tensile strength which is almost similar to polypropylene's (PP) tensile strength, and the cheap raw material compared to other type of materials.
    Matched MeSH terms: Biocompatible Materials/chemistry; Carbon/chemistry; Plastics/chemistry; Polypropylenes/chemistry*
  2. Iftikhar M, Shahnawaz, Saleem M, Riaz N, Aziz-Ur-Rehman, Ahmed I, et al.
    Arch Pharm (Weinheim), 2019 Dec;352(12):e1900095.
    PMID: 31544284 DOI: 10.1002/ardp.201900095
    A series of new N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2ylthiol}acetamide were synthesized by successive conversions of 4-chlorobenzoic acid (a) into ethyl 4-chlorobenzoate (1), 4-chlorobenzoylhydrazide (2) and 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3), respectively. The required array of compounds (6a-n) was obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-n) in the presence of DMF (N,N-dimethylformamide) and sodium hydroxide at room temperature. The structural determination of these compounds was done by infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, electron ionization mass spectrometry, and high-resolution electron ionization mass spectrometry analyses. All compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 6a, 6c-e, 6g, and 6i were found to be promising inhibitors of α-glucosidase with IC50 values of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM, respectively. Molecular modeling and ADME (absorption, distribution, metabolism, excretion) predictions supported the findings. The current synthesized library of compounds was achieved by utilizing very common raw materials in such a way that the synthesized compounds may prove to be promising drug leads.
    Matched MeSH terms: Oxadiazoles/chemistry; Chemistry Techniques, Synthetic/methods*; Glycoside Hydrolase Inhibitors/chemistry
  3. Al-Sharqi A, Apun K, Vincent M, Kanakaraju D, Bilung LM, Sum MSH
    J Appl Microbiol, 2020 Jan;128(1):102-115.
    PMID: 31596989 DOI: 10.1111/jam.14471
    AIM: This work reports a new method for the use of lasers for the selective killing of bacteria targeted using light-absorbing Silver nanoparticles (Ag-NPs) conjugated with a specific antibody against the Gram-positive bacterium Staphylococcus aureus (S. aureus).

    METHODS AND RESULTS: Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs.

    CONCLUSIONS: The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry; Antibodies, Bacterial/chemistry*; Silver/chemistry*; Metal Nanoparticles/chemistry*
  4. Ali Khan MS, Ahmed N, Misbah, Arifuddin M, Zakaria ZA, Al-Sanea MM, et al.
    Food Chem Toxicol, 2018 May;115:523-531.
    PMID: 29555329 DOI: 10.1016/j.fct.2018.03.021
    In view of the report on anti-nociceptive activity of Leathery Murdah, Terminalia coriacea {Roxb.} Wight & Arn. (Combretaceae) leaves, the present study was conducted to isolate the active constituents and identify the underlying mechanisms. The methanolic extract of T. coriacea leaves (TCLME) at doses 125, 250 and 500 mg/kg orally, was subjected to various in-vivo assays in acetic acid induced writhing and formalin induced paw-licking tests with aspirin (100 mg/kg) and morphine (5 mg/kg) as reference drugs. Three flavonoids, rutin, robinin and gossypetin 3-glucuronide 8-glucoside were isolated and characterized from TCLME for the first time. The extract showed significant (p 
    Matched MeSH terms: Methanol/chemistry*; Plant Extracts/chemistry; Plant Leaves/chemistry*; Terminalia/chemistry*
  5. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Cholinesterase Inhibitors/chemistry; Plant Extracts/chemistry; Triterpenes/chemistry; Centella/chemistry*
  6. Zulkifli FH, Hussain FSJ, Rasad MSBA, Mohd Yusoff M
    Carbohydr Polym, 2014 Dec 19;114:238-245.
    PMID: 25263887 DOI: 10.1016/j.carbpol.2014.08.019
    In this study, a novel fibrous membrane of hydroxyethyl cellulose (HEC)/poly(vinyl alcohol) blend was successfully fabricated by electrospinning technique and characterized. The concentration of HEC (5%) with PVA (15%) was optimized, blended in different ratios (30-50%) and electrospun to get smooth nanofibers. Nanofibrous membranes were made water insoluble by chemically cross-linking by glutaraldehyde and used as scaffolds for the skin tissue engineering. The microstructure, morphology, mechanical and thermal properties of the blended HEC/PVA nanofibrous scaffolds were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning colorimetry, universal testing machine and thermogravimetric analysis. Cytotoxicity studies on these nanofibrous scaffolds were carried out using human melanoma cells by the MTT assays. The cells were able to attach and spread in the nanofibrous scaffolds as shown by the SEM images. These preliminary results show that these nanofibrous scaffolds that supports cell adhesion and proliferation is promising for skin tissue engineering.
    Matched MeSH terms: Cellulose/chemistry; Nanostructures/chemistry*; Tissue Scaffolds/chemistry*; Nanofibers/chemistry
  7. Zarnowski R, Jaromin A, Certik M, Czabany T, Fontaine J, Jakubik T, et al.
    Z Naturforsch C J Biosci, 2008 11 13;59(5-6):321-6.
    PMID: 18998394
    The oil of Adenanthera pavonina L. seeds was analysed by chromatographic and instrumental means. The oil was found to be rich in neutral lipids (86.2%), and low in polar lipids (13.8%). The neutral lipids consisted mainly of triacylglycerols (64.2%). Unsaturated fatty acids were found as high as 71%, while the percentage of saturated fatty acids was only 29%. GC and GC/MS analyses revealed linoleic, oleic and lignocerotic acid to be predominant among all fatty acids in the A. pavonina oil, whereas stigmasterol was the major steroid identified within this study. Subsequently, the oil was used for preparation of submicron oil-in-water (o/w) lipid emulsions. Lipid emulsions were formulated by using soybean lecithin (SL) to investigate their particle size, Zeta potential and stability at the different oil and SL ratios. The results obtained indicate possible applications of the tested oil in pharmaceutical and medical fields as drug and cosmetic active ingredient carriers.
    Matched MeSH terms: Lipids/chemistry*; Seeds/chemistry*; Sterols/chemistry; Mimosa/chemistry*
  8. Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, et al.
    Bioorg Chem, 2020 07;100:103906.
    PMID: 32422387 DOI: 10.1016/j.bioorg.2020.103906
    A new series of 4H-chromene-3-carboxylate derivatives were synthesized using multicomponent reaction of salicylaldehyde, ethyl acetoacetate and dimedone in ethanol with K3PO4 as a catalyst at 80 °C. The structures of all newly synthesized compounds were confirmed by spectral techniques viz. IR, 1H NMR, 13C NMR, and LCMS analysis. The newly synthesized compounds 4a to 4j were screened against elastase enzyme. Interestingly, all these compounds found to be potent elastase inhibitors with much lower IC50 value. The compound 4b was found to be most potent elastase inhibitor (IC50 = 0.41 ± 0.01 µM) amongst the synthesized series against standard Oleanolic Acid (IC50 value = 13.45 ± 0.0 µM). The Kinetics mechanism for compound 4b was analyzed by Lineweaver-Burk plots which revealed that compound inhibited elastase competitively by forming an enzyme-inhibitor complex. Along with this, all the synthesized compounds (4a - 4j) exhibits excellent DPPH free radical scavenging ability. The inhibition constant Ki for compound 4b was found to be 0.6 µM. The computational study was comprehensible with the experimental results with good docking energy values (Kcal/mol). Therefore, these molecules can be considered as promising medicinal scaffolds for the treatment of skin-related maladies.
    Matched MeSH terms: Benzopyrans/chemistry*; Carboxylic Acids/chemistry; Enzyme Inhibitors/chemistry*; Pancreatic Elastase/chemistry
  9. Cheng Y, Lai OM, Tan CP, Panpipat W, Cheong LZ, Shen C
    ACS Appl Mater Interfaces, 2021 Jan 27;13(3):4146-4155.
    PMID: 33440928 DOI: 10.1021/acsami.0c17134
    Immobilization can be used to improve the stability of lipases and enhances lipase recovery and reusability, which increases its commercial value and industrial applications. Nevertheless, immobilization frequently causes conformational changes of the lipases, which decrease lipase catalytic activity. in the present work, we synthesized UIO-66 and grafted UIO-66 crystals with proline for immobilization of Candida rugosa lipase (CRL). As indicated by steady-state fluorescence microscopy, grafting of proline onto UIO-66 crystals induced beneficial conformational change in CRL. CRL immobilized on UIO-66/Pro (CRL@UIO-66/Pro) demonstrated higher enzyme activity and better recyclability than that immobilized on UIO-66 (CRL@UIO-66) in both hydrolysis (CRL@UIO-66/Pro: 0.34 U; CRL@UIO-66: 0.15 U) and transesterification (CRL@UIO-66/Pro: 0.93 U; CRL@UIO-66: 0.25 U) reactions. The higher values of kcat and kcat/Km of CRL@UIO-66/Pro also showed that it had better catalytic efficiency as compared to CRL@UIO-66. It is also worth noting that CRL@UIO-66/Pro (0.93 U) demonstrated a much higher transesterification activity as compared to free CRL (0.11 U), indicating that UIO-66/Pro has increased the solvent stability of CRL. Both CRL@UIO-66 and CRL@UIO-66/Pro were also used for the fabrication of biosensors for nitrofen with a wide linear range (0-100 μM), lower limit of detection, and good recovery rate.
    Matched MeSH terms: Enzymes, Immobilized/chemistry; Lipase/chemistry*; Organometallic Compounds/chemistry*; Phthalic Acids/chemistry*
  10. Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R
    Int J Biol Macromol, 2020 Sep 15;159:577-589.
    PMID: 32380107 DOI: 10.1016/j.ijbiomac.2020.04.262
    Short-chain fructooligosaccharides (scFOSs) can be produced from the levan hydrolysis using levanase. Levanase from Bacillus lehensis G1 (rlevblg1) is an enzyme that specifically converts levan to scFOSs. However, the use of free levanase presents a lack of stability and reusability, thus hindering the synthesis of scFOSs for continuous reactions. Here, CLEAs for rlevblg1 were prepared and characterized. Cross-linked levanase aggregates using glutaraldehyde (CLLAs-ga) and bovine albumin serum (CLLAs-ga-bsa) showed the best activity recovery of 92.8% and 121.2%, respectively. The optimum temperature of CLLAs-ga and CLLAs-ga-bsa was increased to 35 °C and 40 °C, respectively, from its free rlevblg1 (30 °C). At high temperature (50 °C), the half-life of CLLAs-ga-bsa was higher than that of free rlevblg1 and CLLAs-ga. Both CLLAs exhibited higher stability at pH 9 and pH 10. Hyperactivation of CLLAs-ga-bsa was achieved with an effectiveness factor of more than 1 and with improved catalytic efficiency. After 3 h reaction, CLLAs-ga-bsa produced the highest total scFOSs yield of 35.4% and total sugar of 60.4% per gram levan. Finally, the reusability of CLLAs for 8 cycles with more than 50% activity retained makes them as a potential synthetic catalyst to be explored for scFOSs synthesis.
    Matched MeSH terms: Enzymes, Immobilized/chemistry*; Glycoside Hydrolases/chemistry*; Oligosaccharides/chemistry; Recombinant Proteins/chemistry
  11. Barman M, Mahmood S, Augustine R, Hasan A, Thomas S, Ghosal K
    Int J Biol Macromol, 2020 Nov 01;162:1849-1861.
    PMID: 32781129 DOI: 10.1016/j.ijbiomac.2020.08.060
    Applying nanotechnology to deliver drug could result in several benefits such as prolong duration of action, enhancement in overall bioavailability, targeting to specific site, low initial loading dose require, systemic stability enhancement etc. Halloysite is one of those clay minerals showing maximum effectiveness when consider as a nano drug carriers for different kind applications. Here, we have used norfloxacin as the model drug for loading into halloysite nanotube (HNT) for its anti-bacterial activity. Norfloxacin was loaded into halloysites by vacuum operation and sonication. The nanotubes were evaluated using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), optical microscopy, water absorption studies, cytotoxicity studies, antimicrobial studies and in vitro diffusion studies. SEM, FT-IR and XRD analysis data showed that the norfloxacin was successfully loaded into nanotubes. TEM analysis confirmed loading of norfloxacin in halloysites' lumen. The halloysite/chitosan nanocomposites were prepared by solvent casting and freeze-drying method. SEM analysis revealed compact and rugged surface of nanocomposites due to existing norfloxacin loaded halloysite. FTIR and XRD confirmed formation of nanocomposite. The nanocomposites showed good antimicrobial effect and good biocompatibility in cytotoxicity study. The in-vitro release studies revealed that halloysite/chitosan nanocomposites were able to sustain the drug release. Also, the nanocomposites were stable in various humidity conditions. Therefore, all the outcomes suggest that the prepared nanocomposites can provide enhanced therapeutic benefits and they can be very potential nano vehicle for sustaining drug delivery.
    Matched MeSH terms: Drug Carriers/chemistry*; Nanotubes/chemistry*; Chitosan/chemistry; Nanocomposites/chemistry
  12. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2020 Dec 01;164:3155-3162.
    PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162
    The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
    Matched MeSH terms: Bacterial Proteins/chemistry; Enzymes, Immobilized/chemistry; Mixed Function Oxygenases/chemistry*; Silicon Dioxide/chemistry*
  13. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
    Matched MeSH terms: Plant Oils/chemistry*; Seeds/chemistry*; Triglycerides/chemistry; Ulmaceae/chemistry*
  14. Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, et al.
    Bioelectrochemistry, 2019 Jun;127:136-144.
    PMID: 30825657 DOI: 10.1016/j.bioelechem.2019.02.005
    Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO2) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO2 nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO2 surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (108 to 101 cfu mL-1), a low detection limit of 101 cfu mL-1 and good selectivity for Salmonella bacteria. This rGO-TiO2 aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
    Matched MeSH terms: Graphite/chemistry*; Titanium/chemistry*; Aptamers, Nucleotide/chemistry*; Nanocomposites/chemistry*
  15. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Arsenic/chemistry*; Cellulose/chemistry; Water Pollutants, Chemical/chemistry; Drinking Water/chemistry*
  16. Tan DC, Quek A, Kassim NK, Ismail IS, Lee JJ
    Molecules, 2020 Nov 06;25(21).
    PMID: 33171900 DOI: 10.3390/molecules25215162
    Scopoletin has previously been reported as a biomarker for the standardization of Paederia foetida twigs. This study is the first report on the determination and quantification of scopoletin using quantitative nuclear magnetic resonance (qNMR) in the different extracts of Paederia foetida twigs. The validated qNMR method showed a good linearity (r2 = 0.9999), limit of detection (LOD) (0.009 mg/mL), and quantification (LOQ) (0.029 mg/mL), together with high stability (relative standard deviation (RSD) = 0.022%), high precision (RSD < 1%), and good recovery (94.08-108.45%). The quantification results of scopoletin concentration in chloroform extract using qNMR and microplate ultraviolet-visible (UV-vis) spectrophotometer was almost comparable. Therefore, the qNMR method is deemed accurate and reliable for quality control of Paederia foetida and other medicinal plants without extensive sample preparation.
    Matched MeSH terms: Plant Extracts/chemistry; Plants, Medicinal/chemistry; Solvents/chemistry; Rubiaceae/chemistry*
  17. Shao M, Li S, Tan CP, Kraithong S, Gao Q, Fu X, et al.
    Int J Biol Macromol, 2021 Mar 15;173:118-127.
    PMID: 33444656 DOI: 10.1016/j.ijbiomac.2021.01.043
    In this study, caffeine (CA) was encapsulated into food-grade starch matrices, including swelled starch (SS), porous starch (PS), and V-type starch (VS). The bitterness of the microcapsules and suppression mechanisms were investigated using an electronic tongue, molecular dynamics (MD) simulation and the in vitro release kinetics of CA. All the CA-loaded microcapsules showed a lower bitterness intensity than the control. The MD results proved that the weak interactions between starch and CA resulted in a moderate CA release rate for SS-CA microcapsules. The PS-CA microcapsule presented the longest CA release, up to 40 min, whereas the VS-CA microcapsule completely released CA in 9 min. The CA release rate was found to be related to the microcapsule structure and rehydration properties. A low CA bitterness intensity could be attributed to a delay in the CA release rate and resistance to erosion of the microcapsules. The results of this work are valuable for improving starch-based microcapsules (oral-targeted drug-delivery systems) by suppressing the bitterness of alkaloid compounds.
    Matched MeSH terms: Amylose/chemistry; Caffeine/chemistry*; Starch/chemistry*; beta-Cyclodextrins/chemistry
  18. Mohd Isha NS, Mohd Kusin F, Ahmad Kamal NM, Syed Hasan SNM, Molahid VLM
    Environ Geochem Health, 2021 May;43(5):2065-2080.
    PMID: 33392897 DOI: 10.1007/s10653-020-00784-z
    This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.
    Matched MeSH terms: Carbon Dioxide/chemistry; Carbonates/chemistry; Oxides/chemistry; Calcium Compounds/chemistry
  19. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Cholesterol/chemistry; Soybeans/chemistry; Surface-Active Agents/chemistry; Lecithins/chemistry
  20. Subramaniam S, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2020;22(1):65-78.
    PMID: 32463999 DOI: 10.1615/IntJMedMushrooms.2020033250
    Ganoderma neo-japonicum is an annual polypore mushroom that is consumed by Malaysian indigenous tribes to treat various ailments including diabetes. The present study aimed to investigate the nutritive composition and in vitro antihyperglycemic effects of G. neo-japonicum extracts on 3T3-L1 preadipocytes. Nutritional analysis of G. neo-japonicum basidiocarps indicated a predominant presence of carbohydrates, proteins, dietary fiber, and microelements. Hot aqueous extract (AE) and its isolated (1,3)(1,6)-β-D-glucan polysaccharide (GNJP) from basidiocarps of G. neo-japonicum were evaluated for their ability to stimulate insulin independent adipogenesis, glucose uptake, adiponectin secretion, and regulate gene expression in 3T3-L1 adipocytes. GNJP showed a dose dependent stimulation of glucose uptake and adiponectin secretion but attenuated lipid accumulation in 3T3-L1 adipocytes. It upregulated the expressions of adiponectin, Aktl (protein kinase B), PPARγ (peroxisome proliferator activated receptor gamma), PRKAG2 (protein kinase, AMP activated), and Slc2a4 (glucose transporter) genes to stimulate glucose uptake in 3T3-L1 cells, which may have contributed to the insulin-mimicking activities observed in this study. In summary, the nutritive compositions and significant glucose uptake stimulatory activities of GNJP indicated that it may have potential use in the formulation of functional food for the management of hyperglycemia, insulin resistance, and related complications.
    Matched MeSH terms: Biological Products/chemistry; Glucans/chemistry; Polysaccharides/chemistry; Ganoderma/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links