Displaying publications 441 - 460 of 1010 in total

Abstract:
Sort:
  1. Zahid NA, Jaafar HZE, Hakiman M
    Plants (Basel), 2021 Mar 26;10(4).
    PMID: 33810290 DOI: 10.3390/plants10040630
    'Bentong' ginger is the most popular variety of Zingiber officinale in Malaysia. It is vegetatively propagated and requires a high proportion of rhizomes as starting planting materials. Besides, ginger vegetative propagation using its rhizomes is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied in many plant species to produce their disease-free planting materials. As 'Bentong' ginger is less known for its micropropagation, this study was conducted to investigate the effects of Clorox (5.25% sodium hypochlorite (NaOCl)) on explant surface sterilization, effects of plant growth regulators, and basal media on shoots' multiplication and rooting. The secondary metabolites and antioxidant activities of the micropropagated plants were evaluated in comparison with conventionally propagated plants. Rhizome sprouted buds were effectively sterilized in 70% Clorox for 30 min by obtaining 75% contamination-free explants. Murashige and Skoog (MS) supplemented with 10 µM of zeatin was the suitable medium for shoot multiplication, which resulted in the highest number of shoots per explant (4.28). MS medium supplemented with 7.5 µM 1-naphthaleneacetic acid (NAA) resulted in the highest number of roots per plantlet. The in vitro-rooted plantlets were successfully acclimatized with a 95% survival rate in the ex vitro conditions. The phytochemical analysis showed that total phenolic acid and total flavonoid content and antioxidant activities of the micropropagated plants were not significantly different from the conventionally propagated plants of 'Bentong' ginger. In conclusion, the present study's outcome can be adopted for large-scale propagation of disease-free planting materials of 'Bentong' ginger.
    Matched MeSH terms: Tissue Culture Techniques
  2. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
    Matched MeSH terms: Culture
  3. Haida Z, Nakasha JJ, Hakiman M
    Plants (Basel), 2020 Aug 14;9(8).
    PMID: 32823824 DOI: 10.3390/plants9081030
    Clinacanthus nutans, commonly known as Sabah snake grass, is one of the more important medicinal plants in Malaysia's herbal industry. C. nutans has gained the attention of medical practitioners due to its wide range of bioactive compounds responsible for various biological activities, such as anti-cancer, anti-venom and anti-viral activities. Due to its high pharmacological properties, the species has been overexploited to meet the demands of the pharmaceutical industry. The present study was conducted to establish a suitable in vitro culture procedure for the mass propagation of C. nutans. Murashige and Skoog (MS) basal medium, supplemented with different types of cytokinins, auxins, basal medium strength and sucrose concentrations, were tested. Based on the results, a full-strength MS basal medium supplemented with 12 µM 6-benzylaminopurine (BAP) and 30 g/L sucrose was recorded as the best outcome for all the parameters measured including the regeneration percentage, number of shoots, length of shoots, number of leaves and fresh weight of leaves. In the analysis of the phenolics content and antioxidant activities, tissue-cultured leaf extracts assayed at 100 °C exhibited the highest phenolic content and antioxidant activities. The propagation of C. nutans via a plant tissue culture technique was recorded to be able to produce high phenolic contents as well as exhibit high antioxidant activities.
    Matched MeSH terms: Tissue Culture Techniques
  4. Noh NA, Salleh SM, Yahya AR
    Lett Appl Microbiol, 2014 Jun;58(6):617-23.
    PMID: 24698293 DOI: 10.1111/lam.12236
    A fed-batch strategy was established based on the maximum substrate uptake rate (MSUR) of Pseudomonas aeruginosa USM-AR2 grown in diesel to produce rhamnolipid. This strategy matches the substrate feed rates with the substrate demand based on the real-time measurements of dissolved oxygen (DO). The MSUR was estimated by determining the time required for consumption of a known amount of diesel. The MSUR trend paralleled the biomass profile of Ps. aeruginosa USM-AR2, where the MSUR increased throughout the exponential phase indicating active substrate utilization and then decreased when cells entered stationary phase. Rhamnolipid yield on diesel was enhanced from 0·047 (g/g) in batch to 0·110 (g/g) in pulse-pause fed-batch and 0·123 (g/g) in MSUR fed-batch. Rhamnolipid yield on biomass was also improved from 0·421 (g/g) in batch, 3·098 (g/g) in pulse-pause fed-batch to 3·471 (g/g) using MSUR-based strategy. Volumetric productivity increased from 0·029 g l(-1) h(-1) in batch, 0·054 g l(-1) h(-1) in pulse-pause fed-batch to 0·076 g l(-1) h(-1) in MSUR fed-batch.
    Matched MeSH terms: Culture Media
  5. Rahman AM, Jamayet NB, Nizami MMUI, Johari Y, Husein A, Alam MK
    J Prosthet Dent, 2021 Jan 17.
    PMID: 33472753 DOI: 10.1016/j.prosdent.2020.07.026
    STATEMENT OF PROBLEM: The climate of tropical Southeast Asia includes high humidity and ultraviolet radiation that reduce the lifespan of silicone prostheses by inducing changes in their mechanical properties and color stability. Studies on the surface roughness (SR) and mechanical properties of different silicone elastomers (SEs) subjected to the natural tropical weather of Southeast Asia are lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the SR, tensile strength (TS), and percentage elongation (% E) of different SEs subjected to outdoor weathering in the Malaysian climate.

    MATERIAL AND METHODS: Type-II dumbbell-shaped specimens (N-120) (nonweathered=15, weathered=15) were made from 3 room-temperature vulcanized (A-2000, A-2006, and A-103) and 1 heat-temperature vulcanized (M-511) silicone (Factor II). For 6 months, weathered specimens were subjected to outdoor weathering inside a custom exposure rack. Simultaneously, the nonweathered specimens were kept in a dehumidifier. Subsequently, the SR was measured with a profilometer; TS and % E were measured by using a universal testing machine. Two-way ANOVA was used to compare the means of the tested properties of the nonweathered and weathered specimens, and pairwise comparison was carried out between the silicones (α=.05).

    RESULTS: After outdoor weathering, the SR, TS, and % E were adversely affected by weathering in the Malaysian environment. Among the silicone materials, A-2000 showed the least TS changes (2.51 MPa), while A-2006 demonstrated significant changes in percentage elongation after outdoor weathering (266.5%). M-511 exhibited the highest mean value (2.50 μm) for SR changes. In addition, A-103 SE showed statistically significant differences in most pairwise comparisons for all 3 dependent variables.

    CONCLUSIONS: Based on the evaluation of mechanical properties, A-103 can be suggested as a suitable silicone for maxillofacial prostheses fabricated for tropical climates. However, A-2000 can be a suitable alternative, although significant changes to surface roughness were detected after outdoor weathering.

    Matched MeSH terms: Culture
  6. Biglari N, Orita I, Fukui T, Sudesh K
    J Biotechnol, 2020 Jan 10;307:77-86.
    PMID: 31669355 DOI: 10.1016/j.jbiotec.2019.10.013
    This study investigates the effect of strategies on poly(3-hydroxybutyrate) [P(3HB)] production in bioreactor. In the production of P(3HB), urea and glucose feeding streams were developed to characterize the fed-batch culture conditions for new Cupriavidus necator NSDG-GG mutant. Feeding urea in repeated fed-batch stage (RFB-I) at 6, and 12 h in cultivation led to insignificant kinetic effect on the cell dry mass (CDM) and P(3HB) accumulation. Feeding glucose in repeated fed-batch stage (RFB-II) demonstrated that the incremental feeding approach of glucose after urea in fill-and-draw (F/D) mode at 24, 30, 36, 42, and 48 h in fermentation increased CDM and P(3HB) concentration. In the 1st cycle in RFB-II, the cumulative CDM reached the value of 26.22 g/L and then it increased with the successive repeated fed-batches to attain biomass of 145 g/L at the end of 5th cycle of RFB-II. The final cumulative P(3HB) concentration at the end of 5th cycle of RFB-II reached 111 g/L with the overall yield of 0.50 g P(3HB) g gluc- 1; the CDM productivity from the RFB-II cycles was in the range of 0.84-1.3 g/(L·h). The RFB-II of glucose in an increment mode produced nearly 2.2 times more increase in CDM and P(3HB) productivities compared to the decrement RFB-II mode. Repeated cultivation had also the advantage of avoiding extra time required for innoculum preparation, and sterilization of bioreactor during batch, thereby it increased the overall industrial importance of the process.
    Matched MeSH terms: Batch Cell Culture Techniques
  7. FARAH EILYANA MOHAMED
    MyJurnal
    Solar photocatalysis is a green technology that takes advantage of sustainable solar energy for enhancing oxidation process of numerous harmful water contaminants. In this study, a custom solar driven zinc oxide (ZnO)-mediated photocatalytic system was developed and its efficiency to remove organic contaminants as well as to disinfect selected bacteria was investigated. Methylene blue (MB) dye was used as the model organic contaminant, while Escherichia coli(E.coli) was used as the model fecal coliform bacteria in contaminated water. A series of photodegradation experiments were conducted on water contaminated with either 10 mg/L of MB or ~1010CFU/ml of E.coli. The experiments were completed under sunlight irradiation in the presence of 1 g/L of nano ZnO photocatalyst for up to 6 hours. Using a solar thermal collector, the photoreactor operated in the temperature range of 25 to 50 oC. The findings revealed that the combination of solar thermal with solar photocatalysis usingZnO intensified the degradation of MB and disinfection of E.coli. 98.08% of MB dye and 99.99% of E.coliwere successfully removed from the water within the first 3 hours of treatment. Almost complete removal was eventually achieved after 6 hours of treatment. It is therefore suggested that ZnO-based solar photocatalytic system developed in this study is highly efficient at enhancing water decontamination process.
    Matched MeSH terms: Culture
  8. Siti Fatimah S, Zakira M, Shareza A R, Zainah M, Mazlinda M
    MyJurnal
    Introduction: Leadership is hard to define, but it’s easy to recognize. Leaders know that to lead they must keep up their leadership skills. Effective leadership skills required from nurse managers which include the ability to create an organization culture that combines high-quality health care and patient/employee safety with highly developed collaborative and team-building skills. This paper presents the preliminary study of the development of the assess- ment leadership tool emphasising on the process of validation and implementation of necessary steps in tool devel- opment. Methods: Questionnaires on leadership style was adopted from Northouse (2014) and working motivation from Purohit et al., (2016). Modification for leadership styles from 35 modified into 48 question and tool on nurses’ motivation from 19 items modified into 28 items. Developed questionnaires were finalized with literature guidance and two content experts. A pre- test was done with 30 respondents for each set of questionnaires. Results: Preliminary development of tool Reliability test result shown that for leadership styles questionnaires which are consisted of 48 items is (α = 0 .77) and working motivation consisted of 28 items is (α = 0.70).Minor modification needed after the lit- erature searching and analysis of pre-test stage, the discussion with expert person after they go through the question- naires also suggested some additional info are needed. After doing validation process the questionnaires are more stable and valid to use for the author target group. Conclusion: These leadership styles assessments are beneficial to guide nurse managers to use suitable styles to manage their nursing staffs. Assessment on working motivation among nurses is also recommended to overcome the issues on working retention among them. In future further investigation regarding which appropriate leadership style need to be explored and the level of working motivation among nursing staff should be monitored regularly.
    Matched MeSH terms: Organizational Culture
  9. Aishah Mohammed Izham, Min, Jasmine Chia Siew, Vidyadaran, Sharmili, Mohd Roslan Sulaiman, Hemabarathy, Bharatham B., Perimal, Enoch Kumar
    MyJurnal
    The human neuroblastoma cell line, SH-SY5Y cells, derived from the parental SK-N-SH cell line, is commonly used as an in vitro model for neuroscience and neurobiology research. Since SH-SY5Y cells are widely cultured for research, several different culture media have been used to optimize the growth of the cells, including Eagle's Minimum Essential Medium (EMEM), Dulbecco’s modified Eagle’s medium (DMEM) and other recently developed culture media. SH-SY5Y cells has the ability to reach confluency in culture flasks ranges from 5 days to 15 days, depending on the culture media used. Hence, the optimization of the culture media is crucial to achieve the fastest growth rate for the cells. The objective of the study is to evaluate the culture media for the proliferation of SH-SY5Y cells. We compared the growth rate of SH-SY5Y cells cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% heat-inactivated fetal bovine serum (hiFBS), Dulbecco’s modified Eagle’s medium: Nutrient mixture F-12 (DMEM:F12) + supplemented with 15% hiFBS and DMEM:F12 supplemented with 10% hiFBS. In DMEM:F12 supplemented with 15% hiFBS, cells grew up to 6.67E+05 cells. In DMEM:F12 supplemented with 10% hiFBS, cells grew up to 5.28E+05 cells. In DMEM supplemented with 15% hiFBS, the cells grew up to 4.76E+05 cells. There was a significant difference between culture media DMEM:F12 supplemented with 15% hiFBS as compared to DMEM:F12 supplemented with 10%hiFBS and DMEM supplemented with 15% hiFBS (p0.05). We found that DMEM:F12 supplemented with 15% hiFBS could serve as an optimized culture media for high proliferation rate of SH-SY5Y cells.
    Matched MeSH terms: Culture Media
  10. Omar Farouk FN, Stott D, Vlad M
    Anim Sci J, 2011 Jun;82(3):420-7.
    PMID: 21615835 DOI: 10.1111/j.1740-0929.2010.00869.x
    This study was conducted to examine the potential for implantation and sustainable fetal development of mouse embryos cultured from the pronuclear to blastocyst stage. Pronuclear embryos from ICR mice (Harlan Sprague-Dawley) were cultured in Sydney IVF sequential media (Cook) to the blastocyst stage in medium only or co-cultured with autologous cumulus cells. We also experimented with co-culture in 100 µL drops. Drop co-culture produced blastocyst formation rates with a mean of 47.0%, which was significantly higher (P < 0.05) compared to embryos cultured in identical culture conditions except without cumulus cells at 27.3%. Blastocysts obtained in vitro in Cook medium only and co-cultured in Cook medium with cumulus cells were transferred to pseudopregnant females of ICR strain. The day of blastocyst transfer into surrogate females was designated as post-transfer of blastocyst day 1 (PT 1). The implantation and fetal development was compared to embryo transfer of in vivo derived blastocysts, which served as controls. There were no statistical differences for implantation and fetal development rates for blastocysts cultured in vitro in either Cook medium only or co-culture in Cook medium with cumulus cells compared to in vivo-derived blastocysts. The advantage of the co-culture system is in generating more blastocysts available for transfer.
    Matched MeSH terms: Culture Media
  11. Daungfu O, Youpensuk S, Lumyong S
    Trop Life Sci Res, 2019 Jan;30(1):73-88.
    PMID: 30847034 DOI: 10.21315/tlsr2019.30.1.5
    Citrus canker caused by Xanthomonas citri subsp. citri is a disease affecting the yield and fruit quality of lime (Citrus aurantiifolia). This research investigated endophytic bacteria obtained from six healthy Citrus spp. to inhibit the pathogen and to control citrus canker on lime plants. Numbers of the endophytic bacteria isolated from C. aurantifolia, C. hystrix, C. maxima, C. nobilis, C. reticulata and C. sinensis were 28, 25, 29, 42, 12 and 34 isolates, respectively. The selected endophytic bacteria that were effective against X. citri subsp. citri were Bacillus amyloliquefaciens LE109, B. subtilis LE24 and B. tequilensis PO80. The optimum culture medium for an antagonistic effect on the pathogen in B. amyloliquefaciens LE109 and B. tequilensis PO80 was yeast extract peptone dextrose broth, and in B. subtilis LE24 was modified soluble starch broth. To control citrus canker in lime, young expanded leaves of lime plants were aseptically punctured and inoculated with 30 μl of bacterial suspension of the pathogen (108 CFU/ml in 0.85% NaCl) per punctured location. After the pathogenic inoculation for 24 h, the leaves were then inoculated with 30 μl of the selected endophytic bacteria (108 CFU/ml in 0.85% NaCl), and treated with 30 μl of the culture media containing bioactive compounds produced by the selected endophytic bacteria. The leaves inoculated with cell suspensions of B. amyloliquefaciens LE109 or B. subtilis LE24 could completely control citrus canker. However, the leaves inoculated with B. tequilensis PO80 displayed 10% disease incidence. Additionally, the leaves treated with the crude bioactive compounds of B. amyloliquefaciens LE109 or B. subtilis LE24 could completely control citrus canker. Notably, the leaves treated with the crude bioactive compounds of B. tequilensis PO80 displayed 5% disease incidence. The results of this study showed that the Bacillus strains play important roles in the biocontrol of citrus canker in lime.
    Matched MeSH terms: Culture Media
  12. Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525349 DOI: 10.3390/ijms22031269
    Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient's quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
    Matched MeSH terms: Culture Media/pharmacology*; Culture Media/chemistry; Cell Culture Techniques
  13. Ariff, A.B., Ooi, T.C., Shamsuddin, Z.H., Halimi, M.S.
    MyJurnal
    The exponential fed-batch cultivation of Bacillus sphaericus UPMB10 in 2 l stirred tank fermenter was performed by feeding the initial batch culture with 14 g l-1 of glycerol according to the algorithm aimed at controlling the specific growth rate (μ) of the bacterium. Very high viable cell count (1.14 x 1010 cfu ml-1), which was four times higher as compared to batch cultivation, was achieved in the fed-batch with a controlled μ at 0.4 h-1. In repeated exponential fed-batch cultivation, consisting of four cycles of harvesting and recharging, a final cell concentration of 1.9 x 1011 cfu ml-1 was obtained at the end of the fourth cycle (46 h). Meanwhile, acetylene reduction of cell samples collected from repeated fed-batch cultivation remained unchanged and was maintained at around 20 nmol C2H2 h-1 ml-1 after prolonged cultivation period, and was comparable to those obtained in batch and exponential fed-batch cultivation. Glycerol could be used as a carbon source for high performance cultivation of B. sphaericus, a nitrogen fixing bacterium, in repeated fed-batch cultivation with high cell yield and cell productivity. The productivity (0.68 g l-1 h-1) for repeated fed-batch cultivation increased about 6 times compared to that obtained in conventional batch cultivation (0.11 g l1 h-1). A innovative method in utilizing glycerol for efficient cultivation of nitrogen fixing bacterium could be beneficial to get more understanding and reference in manipulating the integrated plans for sustainable and profitable biodiesel industry.
    Matched MeSH terms: Batch Cell Culture Techniques
  14. Borojerdi, Mohadese Hashem, Maqbool, Maryam, Zuraidah Yusoff, Vidyadaran, Sharmili, Hwa, Ling King, George, Elizabeth, et al.
    MyJurnal
    Introduction: During the last three decades hematopoietic stem cell transplantation (HSCT) has become a well-established treatment for many hematologic malignancies. The most important limitation for HSC transplantation is the low number of hematopoietic stem cells (HSC) that can lead to delayed engraftment or graft failures. Numerous attempts have been made to improve in vitro HSC expansion via optimization of various methods such as isolation techniques, supplementing with growth factors, utilizing stromal cells as feeder layer and other culture conditions. Objective: This project is aimed to decipher the efficiency of an isolation technique and retrieval of culture expanded HSC from feeder layer using two different harvesting methods. Materials and Methods: Hematopoietic stem cells from human umbilical cord blood were isolated via MACS mediated CD34+ double sorting. Then, the cells were cultured onto MSC feeder layer for 3 and 5 days. Culture expanded cells were harvested using two different harvesting method namely cell aspiration and trypsinization methods. Hematopoietic stem cell expansion index were calculated based on harvesting methods for each time point. Results: The numbers of HSC isolated from human umbilical cord blood were 1.64 x 106 and 1.20 x106 cells at single and double sortings respectively. Although the number of sorted cells diminished at the second sorting yet the yield of CD34+ purity has increased from 43.73% at single sorting to 81.40% at double sorting. Employing the trypsinization method, the HSC harvested from feeder layer showed a significant increase in expansion index (EI) as compared to the cell aspiration harvesting method (p≤ 0.05). However, the purity of CD34+ HSC was found higher when the cells were harvested using aspiration method (82.43%) as compared to the trypsinization method (74.13%). Conclusion: A pure population of CD34+ HSC can be retrieved when the cells were double sorted using MACS and expanded in culture after being harvested using cell aspiration method.
    Matched MeSH terms: Cell Culture Techniques
  15. Yamin, S., Shuhaimi, M., Arbakariya, A., Khalilah, A. K., Anas, O., Yazid, A. M., et al.
    MyJurnal
    The use of component from Ganoderma lucidum as prebiotic source is interesting as the G. lucidum itself was known for more than a decade in the traditional Chinese medicine. In this work, Ganoderma lucidum crude polysaccharides (GLCP) and Polysaccharide-fraction number 2 (PF-2) were used as carbon sources in the fermentation with Bifidobacterium sp. The results showed the potential of prebiotic effect of the G. lucidum extract in batch-culture fermentation based on increment in the growth of bacteria used (0.4 – 1.5 log10 CFU/mL) after 18h fermentation. Fermentation was further done using faecal materials as bacterial inocula and bacterial growth changes were examined using real-time PCR. The results showed the ability of GLCP and PF-2 to support the growth of Bifidobacterium genus with 0.3 and 0.7 log10 cells/ml increased, respectively. Interestingly, Lactobacillus which is known as beneficial bacterial genus also showed growth increment with 0.7 and 1 log10 cells/ml increased. The competition for carbon sources thus inhibits the growth of potentially harmful genus, Salmonella (0.3 and 0.5 log10 cells/ml) in comparison to the control.
    Matched MeSH terms: Batch Cell Culture Techniques
  16. Teoh JI
    Med J Malaysia, 1974 Mar;28(3):135-42.
    PMID: 4278269
    Matched MeSH terms: Culture
  17. Sinnathuray TA, Wong WP
    Aust N Z J Obstet Gynaecol, 1972 May;12(2):122-5.
    PMID: 4509097
    Matched MeSH terms: Culture
  18. Chen PC
    Med J Malaysia, 1977 Dec;32(2):100-2.
    PMID: 614474
    Matched MeSH terms: Culture
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links