Gene therapy and vaccines are rapidly developing field in which recombinant nucleic acids are introduced in mammalian cells for enhancement, restoration, initiation or silencing biochemical function. Beside simplicity in manipulation and rapid manufacture process, plasmid DNA-based vaccines have inherent features that make them promising vaccine candidates in a variety of diseases. This present review focuses on the safety concern of the genetic elements of plasmid such as propagation and expression units as well as their host genome for the production of recombinant plasmid DNA. The highlighted issues will be beneficial in characterizing and manufacturing plasmid DNA for save clinical use. Manipulation of regulatory units of plasmid will have impact towards addressing the safety concerns raised in human vaccine applications. The gene revolution with plasmid DNA by alteration of their plasmid and production host genetics will be promising for safe delivery and obtaining efficient outcomes.
Meralgia paresthetica is an entrapment mononeuropathy of lateral femoral cutaneous nerve, which results in localized area of paresthesia and numbness on the anterolateral aspect of the thigh. We describe the use of alcohol neurolysis of lateral femoral cutaneous nerve in a 74-year-old female who presented with paresthesia over antero-lateral aspect of her left thigh, which was consistent with meralgia paresthetica. Diagnostic block with local anaesthetic confirmed the diagnosis but only archieved temporary pain relief. Alcohol neurolysis was then offered and patient responded well with no complication. The patient experienced prolonged pain relief at 6-month follow-up, with return of ability to ambulate and perform daily activity. Alcohol neurolysis of lateral femoral cutaneous nerve is safe, effective and able to provide sustained pain relief for recurrent meralgia paresthetica.
The effectiveness of mannose (using phosphomannose isomerase [pmi] gene) as a positive selection agent to preferably allow the growth of transformed oil palm embryogenic calli was successfully evaluated. Using the above selection agent in combination with the previously optimized physical and biological parameters and the best constitutive promoter, oil palm embryogenic calli were transformed with pmi gene for producing transgenic plants. Bombarded embryogenic calli were exposed to embryogenic calli medium containing 30:0 g/L mannose to sucrose 3 weeks postbombardment. Selectively, proliferating embryogenic calli started to emerge around 6 months on the above selection medium. The proliferated embryogenic calli were individually isolated once they reached a specific size and regenerated to produce complete plantlets. The complete regenerated plantlets were evaluated for the presence of transgenes by PCR and Southern analyses.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) technique has been developed for enantioseparation of vinpocetine using an inexpensive 2-hydroxypropyl-β-CD (HP-β-CD) as the chiral selector (CS). The best chiral separation was achieved using 40 mM HP-β-CD as the CS in 50 mM phosphate buffer (pH 7.0) consisting of 40 mM sodium dodecyl sulfate (SDS) at a separation temperature and separation voltage of 25°C and 25 kV, respectively. To the author's best knowledge, this is the first CD-MEKC study able to successfully separate the four stereoisomer of vinpocetine in separation time of 9.5 min and resolution of 1.04-3.87.
One of the main indicators of the suspension system efficiency in lower limb prostheses is vertical displacement or pistoning within the socket. Decreasing pistoning and introducing an effective system for evaluating pistoning could contribute to the amputees' rehabilitation process.
In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.
Understanding the mechanisms of gene regulation during breast cancer is one of the most difficult problems among oncologists because this regulation is likely comprised of complex genetic interactions. Given this complexity, a computational study using the Bayesian network technique has been employed to construct a gene regulatory network from microarray data. Although the Bayesian network has been notified as a prominent method to infer gene regulatory processes, learning the Bayesian network structure is NP hard and computationally intricate. Therefore, we propose a novel inference method based on low-order conditional independence that extends to the case of the Bayesian network to deal with a large number of genes and an insufficient sample size. This method has been evaluated and compared with full-order conditional independence and different prognostic indices on a publicly available breast cancer data set. Our results suggest that the low-order conditional independence method will be able to handle a large number of genes in a small sample size with the least mean square error. In addition, this proposed method performs significantly better than other methods, including the full-order conditional independence and the St. Gallen consensus criteria. The proposed method achieved an area under the ROC curve of 0.79203, whereas the full-order conditional independence and the St. Gallen consensus criteria obtained 0.76438 and 0.73810, respectively. Furthermore, our empirical evaluation using the low-order conditional independence method has demonstrated a promising relationship between six gene regulators and two regulated genes and will be further investigated as potential breast cancer metastasis prognostic markers.
Breast cancer is the most common cancer in Malaysian females. The National Cancer Registry in 2003 and 2006 reported that the age standardized incidence of breast cancer was 46.2 and 39.3 per 100,000 populations, respectively. With the cumulative risk at 5.0; a woman in Malaysia had a 1 in 20 chance of developing breast cancer in her lifetime. The incidence of cancer in general, and for breast cancer specifically was highest in the Chinese, followed by Indians and Malays. Most of the patients with breast cancers presented at late stages (stage I: 15.45%, stage II: 46.9%, stage III: 22.2% and stage IV: 15.5%). The Healthy Lifestyles Campaign which started in the early nineties had created awareness on breast cancer and after a decade the effort was enhanced with the Breast Health Awareness program to promote breast self examination (BSE) to all women, to perform annual clinical breast examination (CBE) on women above 40 and mammogram on women above 50. The National Health Morbidity Survey in 2006 showed that the prevalence rate of 70.35% by any of three methods of breast screening; 57.1% by BSE, 51.8% by CBE and 7.6% by mammogram. The current screening policy for breast cancer focuses on CBE whereby all women at the age of 20 years and above must undergo breast examination by trained health care providers every 3 years for age between 20-39 years, and annually for age 40 and above. Several breast cancer preventive programs had been developed by various ministries in Malaysia; among which are the RM50 subsidy for mammogram by the Ministry of Women, Family and Community Development and the SIPPS program (a call-recall system for women to do PAP smear and CBE) by the Ministry of Health. Measures to increase uptake of breast cancer screening and factors as to why women with breast cancer present late should be studied to assist in more development of policy on the prevention of breast cancer in Malaysia.
Matched MeSH terms: Early Detection of Cancer/methods*
Psychosocial and cultural factors influencing cancer health behaviour have not been systematically investigated outside the western culture, and qualitative research is the best approach for this type of social research. The research methods employed to study health problems in Asia predominantly are quantitative techniques. The set up of the first psychosocial cancer research network in Asia marks the beginning of a collaboration to promote and spearhead applied qualitative healthcare research in cancer in the UK, Southeast Asia and the Middle East. This paper sets out the rationale, objectives and mission for the UK-SEA-ME Psychosocial-Cultural Cancer Research Network. The UK-SEA-ME network is made up of collaborators from the University of Leeds (UK), the University of Malaya (Malaysia), the National University of Singapore (Singapore) and the University of United Arab Emirates (UAE). The network promotes applied qualitative research to investigate the psychosocial and cultural factors influencing delayed and late presentation and diagnosis for cancer (breast cancer) in partner countries, as well as advocating the use of the mixed-methods research approach. The network also offers knowledge transfer for capacity building within network universities. The mission of the network is to improve public awareness about the importance of early management and prevention of cancer through research in Asia.
Matched MeSH terms: Health Services Research/methods*
A Boer goat breeding farm with 800 heads of breeder females, 50 breeder males, and 400 growing goats of various ages in Sabah, Malaysia was selected to study the effect of implementing herd health program. This included vaccination program against pneumonic mannheimiosis; fecal monitoring for helminthiasis, coccidiosis, and colibacillosis; and introduction of modified feeding regime comprised of day-time grazing and feeding of cut grass and supplemented feed. The herd health program was implemented in September 2007 and the impact was observed on body weight gains, body scoring, and annual mortality among adults and kids. It was found that implementation of herd health program significantly (p < 0.05) increased the average body weight gains in both adults and kids from 1.8 g per kid and 0.6 g per adult in 2006 to 3.7 g per kid and 2.2 g per adult in 2008. The percentage of adults with body scoring of <3 was significantly (p < 0.05) reduced from 82.3% in 2006 to 77.6% in 2007 and 4% in 2008. Similarly, the annual mortality rate was significantly (p < 0.05) reduced from 6.5% among kids and 58.2% among adults in 2006 to 12.1% among kids and 10.4% among adults in 2007, and to 9.1% among kids and 1.1% among adults in 2008. Therefore, it was concluded that implementation of herd health program significantly improved the survival and performance of goats.
The metabolites of three species of Apiaceae, also known as Pegaga, were analyzed utilizing (1)H NMR spectroscopy and multivariate data analysis. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) resolved the species, Centella asiatica, Hydrocotyle bonariensis, and Hydrocotyle sibthorpioides, into three clusters. The saponins, asiaticoside and madecassoside, along with chlorogenic acids were the metabolites that contributed most to the separation. Furthermore, the effects of growth-lighting condition to metabolite contents were also investigated. The extracts of C. asiatica grown in full-day light exposure exhibited a stronger radical scavenging activity and contained more triterpenes (asiaticoside and madecassoside), flavonoids, and chlorogenic acids as compared to plants grown in 50% shade. This study established the potential of using a combination of (1)H NMR spectroscopy and multivariate data analyses in differentiating three closely related species and the effects of growth lighting, based on their metabolite contents and identification of the markers contributing to their differences.
Matched MeSH terms: Magnetic Resonance Spectroscopy/methods*
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
The objective of the present study was to evaluate the effect of electroporation on the membrane properties of lactobacilli and their ability to remove cholesterol in vitro. The growth of lactobacilli cells treated at 7.5 kV/cm for 4 ms was increased by 0.89 to 1.96 log(10) cfu/mL upon fermentation at 37 °C for 20 h, the increase being attributed to the reversible and transient formation of pores and defragmentation of clumped cells. In addition, an increase of cholesterol assimilation as high as 127.2% was observed for most cells electroporated at a field strength of 7.5 kV/cm for 3.5 ms compared with a lower field strength of 2.5 kV/cm. Electroporation also increased the incorporation of cholesterol into the cellular membrane, as shown by an increased cholesterol:phospholipids ratio (50.0-59.6%) upon treatment at 7.5 kV/cm compared with treatment at 2.5 kV/cm. Saturation of cholesterol was observed in different regions of the membrane bilayer such as upper phospholipids, apolar tail, and polar heads, as indicated by fluorescence anisotropy using 3 fluorescent probes. Electroporation could be a useful technique to increase the ability of lactobacilli to remove cholesterol for possible use as cholesterol-lowering adjuncts in the future.
Rhoptry protein 2 (ROP2) of Toxoplasma gondii is a rhoptry-secreted protein that plays a critical role in parasitophorous vacuole membrane formation during invasion. In previous studies, ROP2 has been shown to be efficient in triggering humoral and cell-mediated responses. High immunogenicity of ROP2 makes it a potential candidate for diagnosis and vaccination against toxoplasmosis. In this study, the ROP2 gene was cloned into pPICZα A expression vector and extracellularly expressed in the yeast Pichia pastoris, which has numerous advantages over other expression systems for eukaryotic proteins expression. The effectiveness of the secreted recombinant ROP2 as a diagnosis agent was assessed by Western Blot with 200 human serum samples. Recombinant ROP2 reacted with toxoplasmosis-positive human serum samples and yielded an overall sensitivity of 90% and specificity of 95%. However, recombinant ROP2 is a better marker for detection of IgG (91.7%) rather than IgM (80%).
Stroke causes a devastating insult to the brain resulting in severe neurological deficits because of a massive loss of different neurons and glia. In the United States, stroke is the third leading cause of death. Stroke remains a significant clinical unmet condition, with only 3% of the ischemic patient population benefiting from current treatment modalities, such as the use of thrombolytic agents, which are often limited by a narrow therapeutic time window. However, regeneration of the brain after ischemic damage is still active days and even weeks after stroke occurs, which might provide a second window for treatment. Neurorestorative processes like neurogenesis, angiogenesis and synaptic plasticity lead to functional improvement after stroke. Stem cells derived from various tissues have the potential to perform all of the aforementioned processes, thus facilitating functional recovery. Indeed, transplantation of stem cells or their derivatives in animal models of cerebral ischemia can improve function by replacing the lost neurons and glial cells and by mediating remyelination, and modulation of inflammation as confirmed by various studies worldwide. While initially stem cells seemed to work by a 'cell replacement' mechanism, recent research suggests that cell therapy works mostly by providing trophic support to the injured tissue and brain, fostering both neurogenesis and angiogenesis. Moreover, ongoing human trials have encouraged hopes for this new method of restorative therapy after stroke. This review describes up-to-date progress in cell-based therapy for the treatment of stroke. Further, as we discuss here, significant hurdles remain to be addressed before these findings can be responsibly translated to novel therapies. In particular, we need a better understanding of the mechanisms of action of stem cells after transplantation, the therapeutic time window for cell transplantation, the optimal route of cell delivery to the ischemic brain, the most suitable cell types and sources and learn how to control stem cell proliferation, survival, migration, and differentiation in the pathological environment. An integrated approach of cell-based therapy with early-phase clinical trials and continued preclinical work with focus on mechanisms of action is needed.
A series of physico-chemical quality (peel and pulp colours, pulp firmness, fruit pH, sugars and acids content, respiration rate and ethylene production) were conducted to study the optimum harvest periods (either week 11 or week 12 after emergence of the first hand) of Rastali banana (Musa AAB Rastali) based on the fruit quality during ripening.
Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.
In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
The growing interest in the environmental occurrence of veterinary and human pharmaceuticals is essentially due to their possible health implications to humans and ecosystem. This study assesses the occurrence of human pharmaceuticals in a Malaysian tropical aquatic environment taking a chemometric approach using cluster analysis, discriminant analysis and principal component analysis. Water samples were collected from seven sampling stations along the heavily populated Langat River basin on the west coast of peninsular Malaysia and its main tributaries. Water samples were extracted using solid-phase extraction and analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for 18 pharmaceuticals and one metabolite, which cover a range of six therapeutic classes widely consumed in Malaysia. Cluster analysis was applied to group both pharmaceutical pollutants and sampling stations. Cluster analysis successfully clustered sampling stations and pollutants into three major clusters. Discriminant analysis was applied to identify those pollutants which had a significant impact in the definition of clusters. Finally, principal component analysis using a three-component model determined the constitution and data variance explained by each of the three main principal components.
Routine use of selective media improves diagnosis of Burkholderia pseudomallei, but resources may be limited in endemic developing countries. To maximise yield in the relatively low-prevalence setting of Kuala Lumpur, Malaysia, B. pseudomallei selective agar and broth were compared with routine media for 154 respiratory specimens from patients with community-acquired disease. Selective media detected three additional culture-positive specimens and one additional melioidosis patient, at a consumables cost of US$75. Burkholderia pseudomallei was not isolated from 74 diabetic foot ulcer samples. Following careful local evaluation, focused use of selective media may be cost-effective.