Displaying publications 481 - 500 of 515 in total

Abstract:
Sort:
  1. Fowler D, Nemitz E, Misztal P, Di Marco C, Skiba U, Ryder J, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3196-209.
    PMID: 22006962 DOI: 10.1098/rstb.2011.0055
    This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.
    Matched MeSH terms: Carbon Dioxide/chemistry
  2. Loader NJ, Walsh RP, Robertson I, Bidin K, Ong RC, Reynolds G, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3330-9.
    PMID: 22006972 DOI: 10.1098/rstb.2011.0037
    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
    Matched MeSH terms: Carbon Dioxide/chemistry
  3. Salman JM, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):133-7.
    PMID: 19879687 DOI: 10.1016/j.jhazmat.2009.09.139
    Oil palm fronds (OPF) were used to prepare activated carbon (PFAC) using physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide gasification. The effects of the preparation variables, which were activation temperature, activation time and chemical impregnation ratios (KOH: char by weight), on the carbon yield and bentazon removal were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were, respectively, employed to correlate the PFAC preparation variables to the bentazon removal and carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from OPF were found as follows: activation temperature of 850 degrees C, activation time of 1h and KOH:char ratio of 3.75:1. The predicted and experimental results for removal of bentazon and yield of PFAC were 99.85%, 20.5 and 98.1%, 21.6%, respectively.
    Matched MeSH terms: Carbon Dioxide/chemistry
  4. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2013 Jan 15;18(1):997-1014.
    PMID: 23322066 DOI: 10.3390/molecules18010997
    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.
    Matched MeSH terms: Carbon Dioxide/chemistry
  5. Nakyinsige K, Sazili AQ, Zulkifli I, Goh YM, Abu Bakar F, Sabow AB
    Meat Sci, 2014 Dec;98(4):701-8.
    PMID: 25089797 DOI: 10.1016/j.meatsci.2014.05.017
    This study assessed the effect of gas stunning which has not been conducted until now in comparison with slaughter without stunning on the welfare and meat quality of rabbits. Eighty male New Zealand White rabbits were divided into two groups of 40 animals and subjected to either halal slaughter without stunning (HS) or gas stunning using 61.4% CO2, 20.3% oxygen and 18.3 % nitrogen (GS). Analysis of the sticking blood revealed that both slaughter procedures caused a substantial increase in the levels of catecholamines, hypercalcemia, hyperglycemia, lactic acidemia and an increase in enzyme activities. The ultimate pH of the Longissimus lumborum muscle did not differ between treatments. GS exhibited higher lightness and cooking loss, and lower glycogen and MFI than HS. This indicates that both GS and HS can be significant stressors although the amount of stress may be below the threshold to negatively affect rabbit meat quality.
    Matched MeSH terms: Carbon Dioxide/administration & dosage
  6. Khasri A, Ahmad MA
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31508-31519.
    PMID: 30203351 DOI: 10.1007/s11356-018-3046-3
    The adsorption behavior of basic, methylene blue (MB), and reactive, remazol brilliant violet 5R (RBV), dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon (IBSAC) was executed via batch and column studies. The produced activated carbon was characterized through Brunauer-Emmett-Teller (BET) surface area and pore structural analysis, proximate and ultimate, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Batch studies were performed to investigate the effects of contact time, initial concentration, and solution pH. The equilibrium data for both MB and RBV adsorption better fits Langmuir model with maximum adsorption capacity of 434.78 and 212.77 mg/g, respectively. Kinetic studies for both MB and RBV dyes showed that the adsorption process followed a pseudo-second-order and intraparticle diffusion kinetic models. For column mode, the breakthrough curves were plotted by varying the flow rate, bed height, and initial concentration and the breakthrough data were best correlated with the Yoon-Nelson model compared to Thomas and Adams-Bohart model. The adsorption activity of IBSAC shows good stability even after four consecutive cycles.
    Matched MeSH terms: Carbon Dioxide/chemistry
  7. Hishan SS, Sasmoko, Khan A, Ahmad J, Hassan ZB, Zaman K, et al.
    Environ Sci Pollut Res Int, 2019 Jun;26(16):16503-16518.
    PMID: 30980369 DOI: 10.1007/s11356-019-05056-7
    The Sub-Saharan Africa (SSA) is far lag behind the sustainable targets that set out in the United Nation's Sustainable Development Goals (SDGs), which is highly needed to embark the priorities by their member countries to devise sustainable policies for accessing clean technologies, energy demand, finance, and food production to mitigate high-mass carbon emissions and conserve environmental agenda in the national policy agenda. The study evaluated United Nation's SDGs for environmental conservation and emission reduction in the panel of 35 selected SSA countries, during a period of 1995-2016. The study further analyzed the variable's relationship in inter-temporal forecasting framework for the next 10 years' time period, i.e., 2017-2026. The parameter estimates for the two models, i.e., CO2 model and PM2.5 models are analyzed by Generalized Method of Moment (GMM) estimator that handle possible endogeneity issue from the given models. The results rejected the inverted U-shaped Environmental Kuznets Curve (EKC) for CO2 emissions, while it supported for PM2.5 emissions with a turning point of US$5540 GDP per capita in constant 2010 US$. The results supported the "pollution haven hypothesis" for CO2 emissions, while this hypothesis is not verified for PM2.5 emissions. The major detrimental factors are technologies, FDI inflows, and food deficit that largely increase carbon emissions in a panel of SSA countries. The IPAT hypothesis is not verified in both the emissions; however, population density will largely influenced CO2 emissions in the next 10 years' time period. The PM2.5 emissions will largely be influenced by high per capita income, followed by trade openness, and technologies, over a time horizon. Thus, the United Nation's sustainable development agenda is highly influenced by socio-economic and environmental factors that need sound action plans by their member countries to coordinate and collaborate with each other and work for Africa's green growth agenda.
    Matched MeSH terms: Carbon Dioxide/analysis
  8. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Nov 03;15(11):7907-22.
    PMID: 21060298 DOI: 10.3390/molecules15117907
    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.
    Matched MeSH terms: Carbon Dioxide/metabolism*
  9. Dom SP, Ikenaga M, Lau SYL, Radu S, Midot F, Yap ML, et al.
    Sci Rep, 2021 Mar 19;11(1):6416.
    PMID: 33742002 DOI: 10.1038/s41598-021-81865-6
    Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.
    Matched MeSH terms: Carbon Dioxide/metabolism
  10. Abu-Bakar NB, Makahleh A, Saad B
    J Sep Sci, 2016 Mar;39(5):947-55.
    PMID: 26718308 DOI: 10.1002/jssc.201501109
    A novel microextraction method based on vortex- and CO2 -assisted liquid-liquid microextraction with salt addition for the isolation of furanic compounds (5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, 2-furaldehyde, 3-furaldehyde, 2-furoic and 3-furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r(2) >0.999), low detection limits (0.08-1.9 μg/L) and good recoveries (80.7-122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples.
    Matched MeSH terms: Carbon Dioxide
  11. Jalilavi M, Zoveidavianpoor M, Attarhamed F, Junin R, Mohsin R
    Sci Rep, 2014;4:3645.
    PMID: 24413195 DOI: 10.1038/srep03645
    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.
    Matched MeSH terms: Carbon Dioxide
  12. Hameed BH, Tan IA, Ahmad AL
    J Hazard Mater, 2009 May 30;164(2-3):1316-24.
    PMID: 18977086 DOI: 10.1016/j.jhazmat.2008.09.042
    The effects of three preparation variables: CO(2) activation temperature, CO(2) activation time and KOH:char impregnation ratio (IR) on the 2,4,6-trichlorophenol (2,4,6-TCP) uptake and carbon yield of the activated carbon prepared from oil palm empty fruit bunch (EFB) were investigated. Based on the central composite design, two quadratic models were developed to correlate the three preparation variables to the two responses. The activated carbon preparation conditions were optimized using response surface methodology by maximizing both the 2,4,6-TCP uptake and activated carbon yield within the ranges studied. The optimum conditions for preparing activated carbon from EFB for adsorption of 2,4,6-TCP were found as follows: CO(2) activation temperature of 814 degrees C, CO(2) activation time of 1.9h and IR of 2.8, which resulted in 168.89 mg/g of 2,4,6-TCP uptake and 17.96% of activated carbon yield. The experimental results obtained agreed satisfactorily with the model predictions. The activated carbon prepared under optimum conditions was mesoporous with BET surface area of 1141 m(2)/g, total pore volume of 0.6 cm(3)/g and average pore diameter of 2.5 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.
    Matched MeSH terms: Carbon Dioxide
  13. Fathordoobady, F., Manap, M.Y., Selamat, J., Singh, A.P.
    MyJurnal
    In the present work, supercritical fluid extraction (SFE) with CO2 as solvent and EtOH/water (v/v) as co-solvent was optimised by applying 23 factorial experimental design for the extraction of betacyanins from red pitaya fruit (Hylocereus polyrhizus) peel. Three independent variables of pressure (20-30 MPa), temperature (40-60°C) and co-solvent concentration (10-20%) were chosen for response variables. With the 2 mL/min flow rate of CO2, the dynamic time of extraction was found to be 90 min. The linear effects of main factors and interactions were evaluated. The calculated response surface model for the pressure/temperature was found to be significant for all the dependent variables. At optimal condition of SFE, the response variables were assessed as maximum extraction yield of 4.09 ± 0.69%, total betacyanins content of 25.49 ± 1.54 mg/100 mL, redness (a*) of 58.18 ± 0.82, and IC50 (antioxidant activity) of 1.34 ± 0.12 mg/mL for the experimental peel extracts. The optimal levels of independent variables were validated for the experimental responses as predicted by the mathematical model. The reliability of this method was confirmed as there was no significant difference between experimental and predicted values. The HPLC-MS profile of betacyanins extract comprised of both acylated and non-acylated betacyanins constituents.
    Matched MeSH terms: Carbon Dioxide
  14. Seyyedi M, Mahmud HKB, Verrall M, Giwelli A, Esteban L, Ghasemiziarani M, et al.
    Sci Rep, 2020 Feb 27;10(1):3624.
    PMID: 32107400 DOI: 10.1038/s41598-020-60247-4
    Observations and modeling studies have shown that during CO2 injection into underground carbonate reservoirs, the dissolution of CO2 into formation water forms acidic brine, leading to fluid-rock interactions that can significantly impact the hydraulic properties of the host formation. However, the impacts of these interactions on the pore structure and macroscopic flow properties of host rock are poorly characterized both for the near-wellbore region and deeper into the reservoir. Little attention has been given to the influence of pressure drop from the near-wellbore region to reservoir body on disturbing the ionic equilibrium in the CO2-saturated brine and consequent mineral precipitation. In this paper, we present the results of a novel experimental procedure designed to address these issues in carbonate reservoirs. We injected CO2-saturated brine into a composite core made of two matching grainstone carbonate core plugs with a tight disk placed between them to create a pressure profile of around 250 psi resembling that prevailing in reservoirs during CO2 injection. We investigated the impacts of fluid-rock interactions at pore and continuum scale using medical X-ray CT, nuclear magnetic resonance, and scanning electron microscopy. We found that strong calcite dissolution occurs near to the injection point, which leads to an increase in primary intergranular porosity and permeability of the near injection region, and ultimately to wormhole  formation. The strong heterogeneous dissolution of calcite grains leads to the formation of intra-granular micro-pores. At later stages of the dissolution, the internal regions of ooids become accessible to the carbonated brine, leading to the formation of moldic porosity. At distances far from the injection point, we observed minimal or no change in pore structure, pore roughness, pore populations, and rock hydraulic properties. The pressure drop of 250 psi slightly disturbed the chemical equilibrium of the system, which led to minor precipitation of sub-micron sized calcite crystals but due to the large pore throats of the rock, these deposits had no measurable impact on rock permeability. The trial illustrates that the new procedure is valuable for investigating fluid-rock interactions by reproducing the geochemical consequences of relatively steep pore pressure gradients during CO2 injection.
    Matched MeSH terms: Carbon Dioxide
  15. Mohamed SH, Hossain MS, Mohamad Kassim MH, Ahmad MI, Omar FM, Balakrishnan V, et al.
    Polymers (Basel), 2021 Feb 19;13(4).
    PMID: 33669623 DOI: 10.3390/polym13040626
    There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10-30 and 2-6 nm, respectively, and an aspect ratio of 5-15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.
    Matched MeSH terms: Carbon Dioxide
  16. Huan, Nai Chien, Wan Awatif Wan Mohd Zohdi
    MyJurnal
    High anion gap metabolic acidosis (HAGMA) is a hallmark of Diabetic Ketoacidosis (DKA). Occasionally, a Normal Anion Gap Metabolic Acidosis (NAGMA) can be seen, especially during the treatment phase. In this case report, a 55-year-old lady with diabetes mellitus who presented with a 2-day history of fever, lethargy and multiple episodes of vomiting and diarrhoea. Initial laboratory investigations revealed: capillary blood glucose as 27 mmol/L, urine ketone as 3+, blood ketone as 3.5 mmol/L, serum bicarbonate as 14 mmol/L, and serum chloride as 95 mmol/L. She was treated with intravenous normal saline fluid resuscitation and constant rate insulin infusion which was fortunately accompanied by stabilization of blood glucose and normalization of blood ketone to 0.2 mmol/L. However, despite normalization of her anion gap (25 to 14), she remained unwell with acidotic breathing due to refractory hyperchloraemic NAGMA with bicarbonate at 11 mol/L and chloride of 112 mmol/L. It was then decided to administer 100 mL of 8.4% Sodium Bicarbonate solution. The next day, she was no longer tachypneic as her bicarbonate and carbon dioxide improved to 21 mmol/L and 32 mmHg respectively. The presence of NAGMA in DKA should prompt clinicians to conduct a thorough search for possible underlying causes, such as gastrointestinal fluid loss, sepsis and chloride load from aggressive fluid resuscitation with normal saline. Sodium bicarbonate should only be considered in intractable cases to correct a NAGMA and not routinely used in the treatment of DKA.
    Matched MeSH terms: Carbon Dioxide
  17. Jakovljevic M, Sugahara T, Timofeyev Y, Rancic N
    Risk Manag Healthc Policy, 2020;13:2261-2280.
    PMID: 33117004 DOI: 10.2147/RMHP.S266386
    Purpose: The goal of this study was to assess the effectiveness of healthcare spending among the leading Asian economies.

    Methods: We have selected a total of nine Asian nations, based on the strength of their economic output and long-term real GDP growth rates. The OECD members included Japan and the Republic of Korea, while the seven non-OECD nations were China, India, Indonesia, Malaysia, Pakistan, the Philippines, and Thailand. Healthcare systems efficiency was analyzed over the period 1996-2017. To assess the effectiveness of healthcare expenditure of each group of countries, the two-way fixed effects model (country- and year effects) was used.

    Results: Quality of governance and current health expenditure determine healthcare system performance. Population density and urbanization are positively associated with a healthy life expectancy in the non-OECD Asian countries. In this group, unsafe water drinking has a statistically negative effect on healthy life expectancy. Interestingly, only per capita consumption of carbohydrates is significantly linked with healthy life expectancy. In these non-OECD Asian countries, unsafe water drinking and per capita carbon dioxide emissions increase infant mortality. There is a strong negative association between GDP per capita and infant mortality in both sub-samples, although its impact is far larger in the OECD group. In Japan and South Korea, unemployment is negatively associated with infant mortality.

    Conclusion: Japan outperforms other countries from the sample in major healthcare performance indicators, while South Korea is ranked second. The only exception is per capita carbon dioxide emissions, which have maximal values in the Republic of Korea and Japan. Non-OECD nations' outcomes were led by China, as the largest economy. This group was characterized with substantial improvement in efficiency of health spending since the middle of the 1990s. Yet, progress was noted with remarkable heterogeneity within the group.

    Matched MeSH terms: Carbon Dioxide
  18. Kam, W.Y., Wan Aida, W.M., Sahilah, A.M.
    MyJurnal
    Two high protein wheat flour samples of Red Horse (RH) and Bake with Yen (BY) were examined for predominant Lactobacillus spp. in fermented liquid sourdough. The identification of Lactobacillus spp. was based on biochemical tests of catalase test, gas carbon dioxide production, arginine test, the ability to grow at temperature of 15°C and 45°C and carbohydrate fermentation using API50CH kit. Those strains were identified as Lactobacillus spp. and confirmed using polymerase chain reaction (PCR) of 16S rRNA partial sequencing analysis. In the present study, we successfully isolated and identified the Lactobacillus plantarum and L. fermentum which were predominant bacteria in liquid sourdough of the sample RH and BY brand, respectively.
    Matched MeSH terms: Carbon Dioxide
  19. Nor Mohd Razif Noraini, Leman, A.M., Ahmad Sayuti ZainalAbidin, Ruslina Mohd. Jazar, LailaShuhada Mat Zin, Rasdan Ismail, et al.
    MyJurnal
    This study has been conducted in a new constructed building of NIOSH Malaysia located at Bandar Baru Bangi, Selangor. The goal of the case study is focusing on the level of Indoor Air Contaminants (IAC) including chemical contaminants within three consequent stages which are before furniture install, after furniture install and during one month occupancy. This study was divided the sampling area into two main facilities which are training and office setting. The contaminants has been measured consist of sixparameters such as Carbon Dioxide (CO2), Carbon Monoxide (CO), Total Volatile Organic Compounds (TVOC), Formaldehyde, Respirable Particulates (PM10) and Ozone. The result of Carbon Monoxide (CO), Total Volatile Organic Compound (TVOC), Respirable Particulates (PM10) and Ozone show an increasing trend across the three sampling stages. The Formaldehyde show an increasing trend in the first and second stages but were reduced significantly the last stage of sampling. These finding indicates that furniture and fittings installed might be a potential sources of indoor air contaminants. The management should be aware to their indoor air status to protect the occupant from the risk of unwanted exposure especially during the early stage of building occupancy.
    Matched MeSH terms: Carbon Dioxide
  20. Taufiq-Yap YH, Nurul Fitriyah Abdullah, Mahiran Basri
    Sains Malaysiana, 2011;40:1179-1186.
    Due to the increase in price of petroleum and environmental concerns, the search for alternative fuels has gained importance. In this work, biodiesel production by transesterification of palm oil with methanol has been studied in a heterogeneous system using sodium hydroxide loaded on alumina (NaOH/Al2O3). NaOH/Al2O3 catalyst was prepared by impregnation of alumina with different amount of an aqueous solution of sodium hydroxide followed by calcination in air for 3 h. The prepared catalysts were then characterized by using x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunner-Emmett-Teller surface area measurement (BET), scanning electron microscopy (SEM) and temperature-programmed desorption of CO2 (CO2-TPD). Moreover, the dependence of the conversion of palm oil on the reactions variables such as the molar ratio of methanol/oil, the amount of catalysts used, reaction temperatures and reaction times were performed. The conversion of 99% was achieved under the optimum reaction conditions. The biodiesel obtained was characterized by FT-IR and the pour point was measured.
    Matched MeSH terms: Carbon Dioxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links