Displaying publications 501 - 520 of 3987 in total

Abstract:
Sort:
  1. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/methods*; Waste Water/chemistry*
  2. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NS, Wahab NA, Ujang Z, et al.
    Bioresour Technol, 2015 Jun;185:445-9.
    PMID: 25851807 DOI: 10.1016/j.biortech.2015.03.024
    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions.
    Matched MeSH terms: Water Pollutants/chemistry*; Water Purification/methods*; Waste Water*
  3. Nasir NM, Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A
    Bioresour Technol, 2015 Aug;190:492-8.
    PMID: 25791330 DOI: 10.1016/j.biortech.2015.03.023
    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism*; Water Purification/methods*; Waste Water/microbiology*
  4. Sim SF, Ling TY, Lau S, Jaafar MZ
    Environ Monit Assess, 2015 Apr;187(4):181.
    PMID: 25773897 DOI: 10.1007/s10661-015-4416-7
    A computer-aided multivariate water quality index is developed based on partial least squares (PLS) regression. The index is termed as the partial least squares water quality index (PLS-WQI). Briefly, a training set was computationally generated based on the guideline of National Water Quality Standards for Malaysia (NWQS) to predict the water quality. The index is benchmarked with the well-established index developed by the Department of Environment, Malaysia (DOE-WQI). The PLS-WQI is a continuous variable with the value closer to I indicating good water quality and closer to V indicating poor water quality. Unlike other conventional indexing methods, the algorithm calculates the index in a multivariate manner. The algorithm allows rapid processing of a large dataset without tedious calculation; it can be an efficient tool for spatial and temporal routine monitoring of water quality. Although the algorithm is designed based on the guideline of NWQS, it can be easily adapted to accommodate other guidelines. The algorithm was evaluated and demonstrated on the simulated and real datasets. Results indicate that the algorithm is robust and reliable. Based on six parameters, the overall ratings derived are inversely correlated to DOE-WQI. When the number of parameter is increased, the overall ratings appear to provide better insights into the water quality.
    Matched MeSH terms: Water Pollutants/standards*; Water Pollution/statistics & numerical data*; Water Quality/standards
  5. Ujang Z, Au YL, Nagaoka H
    Water Sci Technol, 2002;46(9):109-15.
    PMID: 12448459
    This paper describes an investigation on the effect of microbial removal using IMF for high quality drinking water production. The comparison of IMF and IMF-PAC configuration was carried out in the study to highlight the importance of PAC in the system. The specific objective of this study was to study the effect of PAC adsorption in the IMF-PAC system particularly in removing microbial substances from contaminated raw water. A bench scale IMF-PAC configuration using a flat sheet microfiltration membrane was set up for experimental purposes. Experimentally, the result has shown high removal of microbial substances with the IMF-PAC system compared to IMF. The result of E. coli removal achieved was below the detectable level due to the microbial size, which is bigger than membrane pore size. The addition of PAC has shown a direct effect on total microbial removal. The adsorption of microbial onto PAC surfaces reduced the amount of smaller microbial present in permeate samples. As a conclusion, the configuration of IMF is a promising separation process in removing microbial substances, especially when the system is combined with PAC.
    Matched MeSH terms: Water Microbiology*; Water Supply*; Water Purification/methods*
  6. Mohd Zaideen IM
    Mar Pollut Bull, 2019 Nov;148:3-4.
    PMID: 31422300 DOI: 10.1016/j.marpolbul.2019.07.041
    The strategic location of Malaysia along the world's busiest trade waterways underscores the need to cope ballast water issues for both domestic and international shipping. The adoption of Ballast Water Management Convention 2004 (BWMC) by the International Maritime Organization is suitable for management plans intended to prevent the introduction of invasive species through ballast water discharge. Malaysia has ratified the BWMC in September 2010 and the Convention has come into force in September 2017. However up to now, the BWMC has not been fully implemented by Malaysia for ships operating in its waters. This paper analyse the headway in implementing the provisions of the BWMC in Malaysia as well as the issues and challenges encountered for the implementation. The paper concludes that Malaysian government should promulgate laws and policies to clearly communicate on ballast water issues to the shipping industry communities.
    Matched MeSH terms: Water Pollution/legislation & jurisprudence; Water Pollution/prevention & control*; Water Purification/legislation & jurisprudence*; Water Purification/standards
  7. Yousuf FA, Siddiqui R, Khan NA
    Rev Inst Med Trop Sao Paulo, 2017 Jun 01;59:e32.
    PMID: 28591260 DOI: 10.1590/S1678-9946201759032
    Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.
    Matched MeSH terms: Water/parasitology*; Water Microbiology*; Water Supply*
  8. Wee SY, Aris AZ, Yusoff FM, Praveena SM
    Sci Rep, 2020 10 20;10(1):17755.
    PMID: 33082440 DOI: 10.1038/s41598-020-74061-5
    Contamination by endocrine disrupting compounds (EDCs) concerns the security and sustainability of a drinking water supply system and human exposure via water consumption. This study analyzed the selected EDCs in source (river water, n = 10) and supply (tap water, n = 155) points and the associated risks. A total of 14 multiclass EDCs was detected in the drinking water supply system in Malaysia. Triclosan (an antimicrobial agent) and 4-octylphenol (a plasticizer) were only detected in the tap water (up to 9.74 and 0.44 ng/L, respectively). Meanwhile, chloramphenicol and 4-nonylphenol in the system were below the method detection limits. Bisphenol A was observed to be highest in tap water at 66.40 ng/L (detection: 100%; median concentration: 0.28 ng/L). There was a significant difference in triclosan contamination between the river and tap water (p water supply system regarding treatment sustainability and water security. Further exploration of smart monitoring and management using Big Data and Internet of Things and the need to invent rapid, robust, sensitive, and efficient sensors is warranted.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Supply*; Drinking Water/chemistry*
  9. Isa MH, Ezechi EH, Ahmed Z, Magram SF, Kutty SR
    Water Res, 2014 Mar 15;51:113-23.
    PMID: 24412846 DOI: 10.1016/j.watres.2013.12.024
    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/methods*; Waste Water/analysis*
  10. Alias NH, Jaafar J, Samitsu S, Yusof N, Othman MHD, Rahman MA, et al.
    Chemosphere, 2018 Aug;204:79-86.
    PMID: 29653325 DOI: 10.1016/j.chemosphere.2018.04.033
    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
    Matched MeSH terms: Water/chemistry*; Water Pollutants, Chemical/chemistry; Water Purification/methods
  11. Wan Abdul Ghani WMH, Abas Kutty A, Mahazar MA, Al-Shami SA, Ab Hamid S
    Environ Monit Assess, 2018 Apr 19;190(5):297.
    PMID: 29675764 DOI: 10.1007/s10661-018-6675-6
    In order to evaluate the water quality of one of the most polluted urban river in Malaysia, the Penchala River, performance of eight biotic indices, Biomonitoring Working Party (BMWP), BMWPThai, BMWPViet, Average Score Per Taxon (ASPT), ASPTThai, BMWPViet, Family Biotic Index (FBI), and Singapore Biotic Index (SingScore), was compared. The water quality categorization based on these biotic indices was then compared with the categorization of Malaysian Water Quality Index (WQI) derived from measurements of six water physicochemical parameters (pH, BOD, COD, NH3-N, DO, and TSS). The river was divided into four sections: upstream section (recreational area), middle stream 1 (residential area), middle stream 2 (commercial area), and downstream. Abundance and diversity of the macroinvertebrates were the highest in the upstream section (407 individual and H' = 1.56, respectively), followed by the middle stream 1 (356 individual and H' = 0.82). The least abundance was recorded in the downstream section (214 individual). Among all biotic indices, BMWP was the most reliable in evaluating the water quality of this urban river as their classifications were comparable to the WQI. BMWPs in this study have strong relationships with dissolved oxygen (DO) content. Our results demonstrated that the biotic indices were more sensitive towards organic pollution than the WQI. BMWP indices especially BMWPViet were the most reliable and could be adopted along with the WQI for assessment of water quality in urban rivers.
    Matched MeSH terms: Water Pollutants, Chemical/analysis; Water Pollution, Chemical/statistics & numerical data*; Water Quality/standards*
  12. Mook WT, Aroua MK, Szlachta M, Lee CS
    Water Sci Technol, 2017 02;75(3-4):952-962.
    PMID: 28234295 DOI: 10.2166/wst.2016.563
    In this work, a regression model obtained from response surface methodology (RSM) was proposed for the electrocoagulation (EC) treatment of textile wastewater. The Reactive Black 5 dye (RB5) was used as a model dye to evaluate the performance of the model design. The effect of initial solution pH, applied current and treatment time on RB5 removal was investigated. The total number of experiments designed by RSM amounted to 27 runs, including three repeated experimental runs at the central point. The accuracy of the model was evaluated by the F-test, coefficient of determination (R(2)), adjusted R(2) and standard deviation. The optimum conditions for RB5 removal were as follows: initial pH of 6.63, current of 0.075 A, electrolyte dose of 0.11 g/L and EC time of 50.3 min. The predicted RB5 removal was 83.3% and the percentage error between experimental and predicted results was only 3-5%. The obtained data confirm that the proposed model can be used for accurate prediction of RB5 removal. The value of the zeta potential increased with treatment time, and the X-ray diffraction pattern shows that iron complexes were found in the sludge.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*; Waste Water/chemistry*
  13. Ng CK, Goh CH, Lin JC, Tan MS, Bong W, Yong CS, et al.
    Environ Monit Assess, 2018 Jun 15;190(7):402.
    PMID: 29904816 DOI: 10.1007/s10661-018-6784-2
    El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.
    Matched MeSH terms: Fresh Water; Water Pollutants/analysis*; Water Pollution/statistics & numerical data; Water Quality
  14. Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z
    J Colloid Interface Sci, 2018 Dec 15;532:236-260.
    PMID: 30092507 DOI: 10.1016/j.jcis.2018.07.118
    Reports of pharmaceuticals exist in surface water and drinking water around the world, indicate they are ineffectively remove from water and wastewater using conventional treatment technologies. The potential of adverse effect of these pharmaceuticals on public health and aquatic life, also their continuos accumulation have raised the development of water treatment technologies. Hybrid treatment processes like membrane filtration and advance oxidation processes (AOPs) are likely to give rise to efficient simultaneous degradation and separation mechanisms. Conventional membrane filtration techniques can remove the majority of contaminants, but the smallest, undegraded, and stabilized pharmaceutical wastes persist in the treated water. After some 20 years, researchers have recognized the important role of AOPs in the treatment of pharmaceutical wastewater because these technologies are capable of oxidizing recalcitrant, toxic, and non-biodigradable compounds into numerous by-products and finally, inert end-products via the intermediacy of hydroxyl and other radicals. Evidently, membranes are subjected to the fouling phenomenon by the contaminants in wastewater, hence resulting in a reduction of clean water flux and increase in energy demand. In such situations, these membrane hybrid AOPs exert a complementary effect in the elimination of membrane fouling, thus enhancing the performance of the membrane. Therefore, in this review, we describe the basic aspects of the removal and transformation of certain pharmaceuticals via membranes and AOPs. In addition, information and evidences on membrane hybrid AOPs in the field of pharmaceutical wastewater treatment is also presented.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Purification/instrumentation*; Waste Water/chemistry*
  15. Abdulsalam M, Che Man H, Isma Idris A, Zainal Abidin Z, Faezah Yunos K
    PMID: 30304814 DOI: 10.3390/ijerph15102200
    Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N₂ as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods*; Waste Water/chemistry*
  16. Yanyan L, Kurniawan TA, Zhu M, Ouyang T, Avtar R, Dzarfan Othman MH, et al.
    J Environ Manage, 2018 Nov 15;226:365-376.
    PMID: 30138836 DOI: 10.1016/j.jenvman.2018.08.032
    Acetaminophen (Ace) is a trace pollutant widely found in sewage treatment plant (STP) wastewater. We test the feasibility of coconut shell waste, a low cost adsorbent from coconut industry, for removing Ace from synthetic solution in a fixed-bed column adsorption. To enhance its performance, the surface of granular activated carbon (GAC) was pre-treated with NaOH, HNO3, ozone, and/or chitosan respectively. The results show that the chemical modification of the GAC's surface with various chemicals has enhanced its Ace removal during the column operations. Among the modified adsorbents, the ozone-treated GAC stands out for the highest Ace adsorption capacity (38.2 mg/g) under the following conditions: 40 mg/L of Ace concentration, 2 mL/min of flow rate, 45 cm of bed depth. Both the Thomas and the Yoon-Nelson models are applicable to simulate the experimental results of the column operations with their adsorption capacities: ozone-treated GAC (20.88 mg/g) > chitosan-coated GAC (16.67 mg/g) > HNO3-treated GAC (11.09 mg/g) > NaOH-treated GAC (7.57 mg/g) > as-received GAC (2.84 mg/g). This suggests that the ozone-treated GAC is promising and suitable for Ace removal in a fixed-bed reactor.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification*; Water Pollutants, Chemical/chemistry; Water Purification*; Waste Water
  17. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Purification/methods*; Waste Water/chemistry*
  18. Prabakaran K, Eswaramoorthi S, Nagarajan R, Anandkumar A, Franco FM
    Chemosphere, 2020 Aug;252:126430.
    PMID: 32200178 DOI: 10.1016/j.chemosphere.2020.126430
    By convention, dissolved trace elements in the river water are considered to be the fraction that passes through a 0.45 μm filter. However, several researchers have considered filtration cut-off other than 0.45 μm for the separation of dissolved trace elements from particulate fraction. Recent research indicated that trace elements could exist in particulate form as colloids and natural nanoparticles. Moreover, the trace elements in the continental dust (aerosols) constitute a significant component in their geochemical cycling. Due to their high mobility, the trace elements in the micron and sub-micron scale have biogeochemical significance in the coastal zone. In this context, this study focuses on the highly mobile fraction of trace elements in particulates (<11 μm) and dissolved form in the Lower Baram River. A factor model utilizing trace elements in the dissolved and mobile phase in the particulates (<11 μm) along with water column characteristics and the partition coefficient (Kd) of the trace elements indicated a more significant role for manganese oxyhydroxides in trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The factor model further illustrated the dissolution of aluminium and authigenic clay formation. Except for Fe and Al, the contamination risk of mobile trace elements in particulates (<11 μm) together with dissolved form are within the permissible limits of the Malaysian water quality standards during monsoon (MON) and postmonsoon (POM) seasons.
    Matched MeSH terms: Fresh Water; Water Pollutants, Chemical/analysis*; Water Pollution, Chemical/statistics & numerical data*; Water Quality
  19. Alexander JA, Surajudeen A, Aliyu EU, Omeiza AU, Zaini MAA
    Water Sci Technol, 2017 Oct;76(7-8):2232-2241.
    PMID: 29068353 DOI: 10.2166/wst.2017.391
    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*; Water Purification/methods; Waste Water/chemistry
  20. Razak MR, Yusof NA, Haron MJ, Ibrahim N, Mohammad F, Kamaruzaman S, et al.
    Int J Biol Macromol, 2018 Jun;112:754-760.
    PMID: 29428390 DOI: 10.1016/j.ijbiomac.2018.02.035
    In the present study, iminodiacetic acid (IDA)-modified kenaf fiber, K-IDA formed by the chemical modification of plant kenaf biomass was tested for its efficacy as a sorbent material towards the purification of waste water. The K-IDA fiber was first characterized by the instrumental techniques like Fourier transform infrared (FTIR) analysis, elemental analysis (CHNSO), and scanning electron microscopy (SEM). On testing for the biosorption, we found that the K-IDA has an increment in the adsorption of Cu2+ ions as compared against the untreated fiber. The Cu2+ ions adsorption onto K-IDA fits very well with the Langmuir model and the adsorption maximum achieved to be 91.74mg/g. Further, the adsorption kinetics observed to be pseudo second-order kinetics model and the Cu2+ ions adsorption is a spontaneous endothermic process. The desorption study indicates a highest percentage of Cu2+ of 97.59% from K-IDA under 1M HCl solution against H2SO4 (72.59%) and HNO3 (68.66%). The reusability study indicates that the efficiency did not change much until the 4th cycle and also providing enough evidence for the engagement of our biodegradable K-IDA fiber towards the removal of Cu2+ ions in real-time waste water samples obtained from the electroplating and wood treatment industries.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification; Water Purification/methods*; Waste Water*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links