DESIGN: AVERT is a prospective, parallel group, assessor-blinded randomised clinical trial. This paper presents data assessing the generalisability of AVERT.
SETTING: Acute stroke units at 44 hospitals in 8 countries.
PARTICIPANTS: The first 20,000 patients screened for AVERT, of whom 1158 were recruited and randomised.
MODEL: We use the Proximal Similarity Model, which considers the person, place, and setting and practice, as a framework for considering generalisability. As well as comparing the recruited patients with the target population, we also performed an exploratory analysis of the demographic, clinical, site and process factors associated with recruitment.
RESULTS: The demographics and stroke characteristics of the included patients in the trial were broadly similar to population-based norms, with the exception that AVERT had a greater proportion of men. The most common reason for non-recruitment was late arrival to hospital (ie, >24 h). Overall, being older and female reduced the odds of recruitment to the trial. More women than men were excluded for most of the reasons, including refusal. The odds of exclusion due to early deterioration were particularly high for those with severe stroke (OR=10.4, p<0.001, 95% CI 9.27 to 11.65).
CONCLUSIONS: A model which explores person, place, and setting and practice factors can provide important information about the external validity of a trial, and could be applied to other clinical trials.
TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN12606000185561) and Clinicaltrials.gov (NCT01846247).
METHODS: This 1:1 propensity score matched cohort study from 647 public health clinics in Malaysia included all patients with COVID-19 with positive tests aged 18 years and older, who were eligible for nirmatrelvir-ritonavir treatment within 5 days of illness from July 14, 2022, to November 14, 2022. The exposed group was patients with COVID-19 initiated with nirmatrelvir-ritonavir treatment, whereas those not initiated with the drug served as the control group. Data was analyzed from July 14, 2022 to December 31, 2022.
RESULTS: A total of 20,966 COVID-19 high-risk outpatients (n = 10,483 for nirmatrelvir-ritonavir group and n = 10,483 for control group) were included in the study. Nirmatrelvir-ritonavir treatment was associated with a 36% reduction (adjusted hazard ratio 0.64 [95% CI 0.43, 0.94]) in hospitalization compared with those not given the drug. There was a single ICU admission for the control group and one death each was reported in the nirmatrelvir-ritonavir and control group, respectively.
CONCLUSIONS: Nirmatrelvir-ritonavir treatment was associated with reduced hospitalization in high-risk patients with COVID-19 even in highly vaccinated populations.
METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years.
RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile).
CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.
METHODS: On two different occasions, a panel of 14 retinal specialists from Malaysia, together with an external expert, responded to a questionnaire on management of DME. A consensus was sought by voting after compiling, analyzing and discussion on first-phase replies on the round table discussion. A recommendation was deemed to have attained consensus when 12 out of the 14 panellists (85%) agreed with it.
RESULTS: The terms target response, adequate response, nonresponse, and inadequate response were developed when the DME patients' treatment responses were first characterized. The panelists reached agreement on a number of DME treatment-related issues, including the need to classify patients prior to treatment, first-line treatment options, the right time to switch between treatment modalities, and side effects associated with steroids. From this agreement, recommendations were derived and a treatment algorithm was created.
CONCLUSION: A detail and comprehensive treatment algorithm by Malaysia Retina Group for the Malaysian population provides guidance for treatment allocation of patients with DME.
METHODS: Patients enrolled in the PROGRESS registry were evaluated for use of vasopressor and LDC (equivalent or lesser potency to hydrocortisone 50 mg six-hourly plus 50 microg 9-alpha-fludrocortisone) for treatment of severe sepsis at any time in intensive care units (ICUs). Baseline characteristics and hospital mortality were analyzed, and logistic regression techniques used to develop propensity score and outcome models adjusted for baseline imbalances between groups.
RESULTS: A total of 8,968 patients with severe sepsis and sufficient data for analysis were studied. A total of 79.8% (7,160/8,968) of patients received vasopressors, and 34.0% (3,051/8,968) of patients received LDC. Regional use of LDC was highest in Europe (51.1%) and lowest in Asia (21.6%). Country use was highest in Brazil (62.9%) and lowest in Malaysia (9.0%). A total of 14.2% of patients on LDC were not receiving any vasopressor therapy. LDC patients were older, had more co-morbidities and higher disease severity scores. Patients receiving LDC spent longer in ICU than patients who did not (median of 12 versus 8 days; P <0.001). Overall hospital mortality rates were greater in the LDC than in the non-LDC group (58.0% versus 43.0%; P <0.001). After adjusting for baseline imbalances, in all mortality models (with vasopressor use), a consistent association remained between LDC and hospital mortality (odds ratios varying from 1.30 to 1.47).
CONCLUSIONS: Widespread use of LDC for the treatment of severe sepsis with significant regional and country variation exists. In this study, 14.2% of patients received LDC despite the absence of evidence of shock. Hospital mortality was higher in the LDC group and remained higher after adjustment for key determinates of mortality.
PATIENTS AND METHODS: A nested case-control study was conducted with the European Prospective Investigation into Cancer and Nutrition (EPIC) with 1871 cases and 1871 matched controls. Conditional logistic regression analysis was used to investigate the association of pre-diagnostic circulating MSP with risk of incident prostate cancer overall and by tumour subtype. EPIC-derived estimates were combined with published data to calculate an MR estimate using two-sample inverse-variance method.
RESULTS: Plasma MSP concentrations were inversely associated with prostate cancer risk after adjusting for total prostate-specific antigen concentration [odds ratio (OR) highest versus lowest fourth of MSP = 0.65, 95% confidence interval (CI) 0.51-0.84, Ptrend = 0.001]. No heterogeneity in this association was observed by tumour stage or histological grade. Plasma MSP concentrations were 66% lower in rs10993994 TT compared with CC homozygotes (per allele difference in MSP: 6.09 ng/ml, 95% CI 5.56-6.61, r2=0.42). MR analyses supported a potentially causal protective association of MSP with prostate cancer risk (OR per 1 ng/ml increase in MSP for MR: 0.96, 95% CI 0.95-0.97 versus EPIC observational: 0.98, 95% CI 0.97-0.99). Limitations include lack of complete tumour subtype information and more complete information on the biological function of MSP.
CONCLUSIONS: In this large prospective European study and using MR analyses, men with high circulating MSP concentration have a lower risk of prostate cancer. MSP may play a causally protective role in prostate cancer.