BACKGROUND: Studies on genotypic and phenotypic correlations among characters of crop plants are useful in planning, evaluating and setting selection criteria for the desired characters in a breeding program. The present study aimed to estimate the phenotypic correlation coefficients among yield and yield attributed characters and to work out the direct and indirect effects of yield-related characters on yield per plant using path coefficient analysis. Twenty-six genotypes of chili pepper were laid out in a randomized complete block design with three replications.
RESULTS: Yield per plant showed positive and highly significant (P ≤ 0.01) correlations with most of the characters studied at both the phenotypic and genotypic levels. By contrast, disease incidence and days to flowering showed a significant negative association with yield. Fruit weight and number of fruits exerted positive direct effect on yield and also had a positive and significant (P ≤ 0.01) correlation with yield per plant. However, fruit length showed a low negative direct effect with a strong and positive indirect effect through fruit weight on yield and had a positive and significant association with yield.
This study was carried out to evaluate the efficiency of Guar gum in removing Persistent Organic Pollutants (POPs), viz. phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate (DEHP), from farm effluent. The removal efficiency was compared with alum. The results indicated that 4.0 mg L(-1) of Guar gum at pH 7 could remove 99.70% and 99.99% of phenol,2,4-bis(1,1-dimethylethyl) and DEHP, respectively. Box Behnken design was used for optimization of the operating parameters for optimal POPs removal. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy studies were conducted on the flocs. SEM micrographs showed numerous void spaces in the flocs produced by Guar gum as opposed to those produced by alum. This indicated why Guar gum was more effective in capturing and removal of suspended particles and POPs as compared to alum. FTIR spectra indicated a shift in the bonding of functional groups in the flocs produced by Guar gum as compared to raw Guar gum powder signifying chemical attachment of the organics present in the effluent to the coagulant resulting in their removal. Guar gum is highly recommended as a substitute to chemical coagulant in treating POPs due to its non-toxic and biodegradable characteristics.
The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives.
Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
This paper describes a rehabilitation programme for male chronic mental patients, with the aim of reintegrating them into the community. Since in Malaysia about 50% of the work force are stilling earning their living in the agricultural sector, the programme concentrates on training in farming and animal rearing. Since the patients are very institutionalised, resocialisation training is also provided that involves learning to communicate, to mix with others, to know how to use money, to make one's own demands, and to cope with more personal freedom. When a patient is trained well enough to be employed outside, a job is found for him that provides food, lodging and payment. After discharge from the hospital, he is regularly followed up by the social worker.
Citric acid (CA) has a high demand due to its various uses in the food and pharmaceutical industries. However, the natural supply of CA is minimal compared to its growing industrial demand. The increasing demand for CA can be fulfilled by using biotechnological processes. This study utilized liquid state bioconversion by Aspergillus niger for CA production using sugarcane molasses as the primary substrate. Sugarcane molasses which is agricultural waste consists of significant proportion of organic matters such as lipids and carbohydrates. This makes sugarcane molasses as a potential and alternative source of producing CA at a lower cost. In this study, statistical optimization was applied to improve CA production using submerged fermentation in shake flasks. Aspergillus niger was cultured in potato dextrose agar. Then, inoculum spores were introduced into the fermentation media for a specific duration according to the experimental design from Central Composite Design (CCD) tool under Response Surface Methodology (RSM) in Design Expert 6.0 software. Three parameters were chosen to be optimized at 32⁰C i.e.agitation rate (160, 80, 200 rpm), substrate concentration (47, 60, 73%) and fermentation time (24, 72, 120 h). High Performance Liquid Chromatography (HPLC)and Fourier-transform infrared spectroscopy(FTIR) analyses were conducted to measure CA yield. The optimization study showed that the media incubated for 72 hours with a substrate concentration of 60% and an agitation speed of 180 rpm produced the highest CA yield(21.2 g/L).The analysis of variance (ANOVA) also showed that CCD quadratic model was significant with P-value< 0.0104 and R2is0.8964.
Globalization has altered the way we live and earn a livelihood. Consequently, trade and travel have been recognized as significant determinants of the spread of disease. Additionally, the rise in urbanization and the closer integration of the world economy have facilitated global interconnectedness. Therefore, globalization has emerged as an essential mechanism of disease transmission. This paper aims to examine the potential impact of COVID-19 on globalization and global health in terms of mobility, trade, travel, and countries most impacted. The effect of globalization were operationalized in terms of mobility, economy, and healthcare systems. The mobility of individuals and its magnitude was assessed using airline and seaport trade data and travel information. The economic impact was measured based on the workforce, event cancellations, food and agriculture, academic institutions, and supply chain. The healthcare capacity was assessed by considering healthcare system indicators and preparedness of countries. Utilizing a technique for order of preference by similarity to ideal solution (TOPSIS), we calculated a pandemic vulnerability index (PVI) by creating a quantitative measure of the potential global health. The pandemic has placed an unprecedented burden on the world economy, healthcare, and globalization through travel, events cancellation, employment workforce, food chain, academia, and healthcare capacity. Based on PVI results, certain countries were more vulnerable than others. In Africa, more vulnerable countries included South Africa and Egypt; in Europe, they were Russia, Germany, and Italy; in Asia and Oceania, they were India, Iran, Pakistan, Saudi Arabia, and Turkey; and for the Americas, they were Brazil, USA, Chile, Mexico, and Peru. The impact on mobility, economy, and healthcare systems has only started to manifest. The findings of this study may help in the planning and implementation of strategies at the country level to help ease this emerging burden.
In developing countries, farming businesses are dominated by small-scale farmers with limited resources. Such farmers are subjected to high risks, influencing the success rate of their agricultural endeavors. This study, conducted in Aceh Province, Indonesia, measured the risk tolerance among six groups of farmers with businesses based on the following seasonal commodities: paddy, corn, soy, chili, potato, and tomato. A total of 360 respondents were surveyed and 54 key respondents interviewed. A Likert scale was used to assess the risk tolerance levels of the farmers, and ordinal regression analysis to analyze the factors influencing risk tolerance. Paddy, chili, and potato farmers had a relatively high tolerance to farming risks, whereas corn and tomato farmers showed a moderate tolerance. Soy farmers were classified into the low risk tolerance category. Ordinal analysis indicated that the risk tolerance of farmers in each commodity group was influenced by specific factors. Overall, it was found that the farmers' attitudes to risk tolerance were significantly affected by the following factors: experience, education, farming income, capital, land status, and land size. An intervention strategy including improvements in the curriculum, actors, network, scope of clusters, and technology are among the strategies required to positively improve farmers' perceptions and increase their tolerance to farming risks.
Numerous technologies and approaches have been used in the past few decades to remove hexavalent chromium (Cr[VI]) in wastewater and the environment. However, these conventional technologies are not economical and efficient in removing Cr(VI) at a very low concentration (1-100 ppm). As an alternative, the utilization of bioremediation techniques which uses the potential of microorganisms could represent an effective technique for the detoxification of Cr(VI). In this study, we reported a newly isolated bacterium identified as Acinetobacter radioresistens sp. NS-MIE from Malaysian agricultural soil. The chromate reduction potential of strain NS-MIE was optimized using RSM and ANN techniques. The optimum condition predicted by RSM for the bacterium to reduce hexavalent chromium occurred at pH 6, 10 g/L ppm of nutrient broth (NB) concentration and 100 ppm of chromate concentration while the optimum condition predicted by ANN is at pH 6 and 10 g/L of NB concentration and of 60 ppm of chromate concentration with chromate reduction (%) of 75.13 % and 96.27 %, respectively. The analysis by the ANN model shows better prediction data with a higher R2 value of 0.9991 and smaller average absolute deviation (AAD) and root mean square error (RMSE) of 0.33 % and 0.302 %, respectively. Validation analysis showed the predicted values by RSM and ANN were close to the validation values, whereas the ANN showed the lowest deviation, 2.57%, compared to the RSM. This finding suggests that the ANN showed a better prediction and fitting ability compared to the RSM for the nonlinear regression analysis. Based on this study, A. radioresistens sp. NS-MIE exhibits strong potential characteristics as a candidate for the bioremediation of hexavalent chromium in the environment.
The current and escalating extent of soil degradation, water scarcity and environmental concern
plaguing agricultural productivity, demands re-assessing the direction of food production. Aquaponics
is a concept relatively new to modern food production methods and can contribute to food security.
This study was conducted to establish sustainable aquaculture systems that maximize benefits and
minimize the accumulation of detrimental compounds and other types of negative impacts on both
natural and social environments. This study carried out at an average inflow rate of 1.28 m/day to
evaluate the operation of the aquaponics recirculation system (ARS) on nutrients removal and growth
and yield of African catfish as well as water spinach. A special design of ARS was used to provide
nitrification of fishery wastewater, where the combination of sands and gravels in hydroponics trough,
providing both surfaces for biofuel development and cultivation area for plants. Removal efficiencies
of 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS), total ammonia nitrogen
(TAN), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), and orthophosphate (PO4
3-
) were 82%, 89%,
93%, 94%, 81%, and 80%, respectively. The feed conversion ratio (FCR) and specific growth rate
(SGR) of African catfish were 1.08 and 3.34% day-1
, respectively. The average water spinach
production was 3.56 kg per m2
. This study showed that ARS is a method of producing crop along with
a healthy protein source and among the best alternatives for achieving economic and environmental
sustainability.
There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
Edible bird's nest (EBN) is recognized as a nourishing food among Chinese people. The efficacy of EBN was stated in the records of traditional Chinese medicine and its activities have been reported in many researches. Malaysia is the second largest exporter of EBNs in the world, after Indonesia. For many years, EBN trade to China was not regulated until August 2011, when a safety alert was triggered for the consumption of EBNs. China banned the import of EBNs from Malaysia and Indonesia due to high level of nitrite. Since then, the Malaysia government has formulated Malaysia Standards for swiftlet farming (MS 2273:2012), edible bird's nest processing plant design and management (MS 2333:2010), and edible bird's nest product quality (MS 2334:2011) to enable the industry to meet the specified standards for the export to China. On the other hand, Indonesia's EBN industry formulated a standard operating procedure (SOP) for exportation to China. Both countries can export EBNs to China by complying with the standards and SOPs. EBN contaminants may include but not limited to nitrite, heavy metals, excessive minerals, fungi, bacteria, and mites. The possible source of contaminants may come from the swiftlet farms and the swiftlets or introduced during processing, storage, and transportation of EBNs, or adulterants. Swiftlet house design and management, and EBN processing affect the bird's nest color. Degradation of its optical quality has an impact on the selling price, and color changes are tied together with nitrite level. In this review, the current and future prospects of EBNs in Malaysia and Indonesia in terms of their quality, and the research on the contaminants and their effects on EBN color changes are discussed.
An appropriate tillage method must be implemented by maize growers to improve phosphorus dynamics in the soil in order to increase phosphorus uptake by plant. The objective of this study was to investigate the effects of tillage systems on phosphorus and its fractions in rhizosphere and non-rhizosphere soils under maize. An experimental field was established, with phosphate fertilizers applied to four treatment plots: continuous rotary tillage (CR), continuous no-tillage (CN), plowing-rotary tillage (PR), and plowing-no tillage (PN). Under the different tillage methods, the available P was increased in the non-rhizosphere region. However, the concentration of available P was reduced in the rhizosphere soil region. The soil available P decreased with the age of the crop until the maize reached physiological maturity. The non-rhizosphere region had 132.9%, 82.5%, 259.8%, and 148.4% more available P than the rhizosphere region under the CR, PR, CN, and PN treatments, respectively. The continuous no-tillage method (CN) improved the uptake of soil phosphate by maize. The concentrations of Ca2-P, Ca8-P, Fe-P, Al-P and O-P at the maturity stage were significantly lower than other seedling stages. However, there was no significant relationship between total P and the P fractions. Therefore, a continuous no-tillage method (CN) can be used by farmers to improve phosphorus availability for spring maize. Soil management practices minimizing soil disturbance can be used to impove phosphorus availability for maize roots, increase alkaline phosphatase activity in the rhizosphere soil and increase the abundance of different phosphorus fractions.
The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.
The common industrial starches are typically derived from cereals (corn, wheat, rice, sorghum), tubers (potato, sweet potato), roots (cassava), and legumes (mung bean, green pea). Sago (Metroxylon sagu Rottb.) starch is perhaps the only example of commercial starch derived from another source, the stem of palm (sago palm). Sago palm has the ability to thrive in the harsh swampy peat environment of certain areas. It is estimated that there are about 2 million ha of natural sago palm forests and about 0.14 million ha of planted sago palm at present, out of a total swamp area of about 20 million ha in Asia and the Pacific Region, most of which are under- or nonutilized. Growing in a suitable environment with organized farming practices, sago palm could have a yield potential of up to 25 tons of starch per hectare per year. Sago starch yield per unit area could be about 3 to 4 times higher than that of rice, corn, or wheat, and about 17 times higher than that of cassava. Compared to the common industrial starches, however, sago starch has been somewhat neglected and relatively less attention has been devoted to the sago palm and its starch. Nevertheless, a number of studies have been published covering various aspects of sago starch such as molecular structure, physicochemical and functional properties, chemical/physical modifications, and quality issues. This article is intended to piece together the accumulated knowledge and highlight some pertinent information related to sago palm and sago starch studies.