OBJECTIVE: This meta-analysis aimed to assess the updated pooled effects of these polymorphisms with DN among Asian populations with type 2 diabetes mellitus.
METHODS: The PubMed electronic database was searched without duration filter until August 2017 and the reference list of eligible studies was screened. The association of each polymorphism with DN was examined using odds ratio and its 95% confidence interval based on dominant, recessive and allele models. Subgroup analyses were conducted based on region, DN definition and DM duration.
RESULTS: In the main analysis, the ACE I/D (all models) and AGTR1 A1166C (dominant model) showed a significant association with DN. The main analysis of the AGT M235T polymorphism did not yield significant findings. There were significant subgroup differences and indication of significantly higher odds for DN in terms of DM duration (≥10 years) for ACE I/D (all models), AGT M235T (recessive and allele models) and AGTR1 A1166C (recessive model). Significant subgroup differences were also observed for DN definition (advanced DN group) and region (South Asia) for AGTR1 A1166C (recessive model).
CONCLUSION: In the Asian populations, ACE I/D and AGTR1 A1166C may contribute to DN susceptibility in patients with T2DM by different genetic models. However, the role of AGT M235T needs to be further evaluated.
RESULTS: Cluster-wide C19MC miRNA expression profiling by microarray analysis showed wholesome C19MC activation in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, in multipotent adipose-derived mesenchymal stem cells (MSCs) and a unipotent human white pre-adipocyte cell line, only selected C19MC miRNAs were expressed. MiRNA copy number analysis also showed selective C19MC expression in cancer cells with expression patterns highly similar to those in MSCs, suggesting similar miRNA regulatory mechanisms in these cells. Selective miRNA expression also suggests complex transcriptional mechanism(s) regulating C19MC expression under specific cellular and pathological conditions. Bioinformatics analysis showed that sixteen of the C19MC miRNAs share the same "AAGUGC" seed sequence with members of the miR-302/-372 family, which are known cellular reprogramming factors. In particular, C19MC-AAGUGC-miRNAs with the nucleotides 2-7 canonical seed position as in miR-302/-372 miRNAs, may play similar roles as miR-302/-372 in induced pluripotency. A biased 3p-arm selection of the C19MC-AAGUGC-miRNAs was observed indicating that targets of the 3p species of these miRNAs may be biologically significant in regulating stemness. Furthermore, bioinformatics analysis of the putative targets of the C19MC-AAGUGC-miRNAs predicted significant involvement of signaling pathways in reprogramming, many of which contribute to promoting apoptosis by indirect activation of the pro-apoptotic proteins BAK/BAX via suppression of genes of the cell survival pathways, or by enhancing caspase-8 activation through targeting inhibitors of TRAIL-inducing apoptosis.
CONCLUSIONS: This work demonstrated selective C19MC expression in MSCs and cancer cells, and, through miRNA profiling and bioinformatics analysis, predicted C19MC modulation of apoptosis in induced pluripotency and tumorigenesis.
MATERIALS AND METHODS: We searched candidate genes from the schizophrenia database and performed a comprehensive meta-analysis using all the available data up to August 2017. The association between susceptible SNPs and schizophrenia was assessed by the pooled odds ratio with 95% confidence interval using fixed-effect and random-effect models.
RESULTS: A total of 21 studies including 8291 cases and 9638 controls were used for meta-analysis. Three investigated SNPs were rs165599, rs3737597, and rs1047631 of COMT, DISC1, and DTNBP1, respectively. Our results suggested that rs3737597 showed a significant association with schizophrenia in Europeans (odds ratio: 1.584, P: 0.002, 95% confidence interval: 1.176-2.134) under a random-effect framework.
CONCLUSION: This meta-analysis indicated that rs3737597 of DISC1 was significantly associated with schizophrenia in Europeans, and it can be suggested as an ethnic-specific risk genetic factor.
Objectives: To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts.
Design Setting, and Participants: Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria.
Main Outcomes and Measures: Genotypes of common variants, association with disease status, and polygenic risk scores.
Results: Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12).
Conclusions and Relevance: This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.