Displaying publications 41 - 60 of 67 in total

Abstract:
Sort:
  1. Mustahil NA, Baharuddin SH, Abdullah AA, Reddy AVB, Abdul Mutalib MI, Moniruzzaman M
    Chemosphere, 2019 May 04;229:349-357.
    PMID: 31078892 DOI: 10.1016/j.chemosphere.2019.05.026
    Ionic liquids (ILs) based surfactants have been emerged as attractive alternatives to the conventional surfactants owing to their tailor-made and eco-friendly properties. Therefore, present study described the synthesis of nine new fatty amino acids based IL surfactants utilizing lauroyl sarcosinate anion and pyrrolidinium, imidazolium, pyridinium, piperidinium, morpholinium and cholinium cations for the first time. The synthesized surface active lauroyl sarcosinate ionic liquids (SALSILs) were characterized by 1H NMR, 13C NMR and TGA. Next, the surface tension and critical micellar concentrations were determined and compared with the surface properties of ILs based surfactants. Further, the toxicity and biodegradability of the synthesized SALSIILs were evaluated to confirm their safe and efficient process applications. The studies revealed that three out of nine synthesized SALSILs containing pyridinium cation have showed strong activity towards the tested microbial growth. The remaining six SALSILs met the biocompatible measures demonstrating moderate to low activity depends on the tested microbes. The alicyclic SALSILs containing morpholinium and piperidinium cations have demonstrated 100% biodegradation after 28 days of the test period. Overall, it is believed that the synthesized SALSILs could effectively replace the conventional surfactants in a wide variety of applications.
  2. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
  3. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F
    Int J Biol Macromol, 2018 Dec;120(Pt A):1294-1305.
    PMID: 30189278 DOI: 10.1016/j.ijbiomac.2018.09.002
    PHAs (polyhydroxyalkanoates) have emerged as biodegradable plastics more strongly in the 20th century. A wide range of bacterial species along with fungi, plants, oilseed crops and carbon sources have been used extensively to synthesize PHA on large scales. Alteration of PHA monomers in their structures and composition has led to the development of biodegradable and biocompatible polymers with highly specific mechanical properties. This leads to the incorporation of PHA in numerous biomedical applications within the previous decade. PHAs have been fabricated in various forms to perform tissue engineering to repair liver, bone, cartilage, heart tissues, cardiovascular tissues, bone marrow, and to act as drug delivery system and nerve conduits. A large number of animal trials have been carried out to assess the biomedical properties of PHA monomers, which also confirms the high compatibility of PHA family for this field. This review summarizes the synthesis of PHA from different sources, and biosynthetic pathways and biomedical applications of biosynthesized polyhydroxyalkanoates.
  4. Yenugu VMR, Ambavaram VBR, Moniruzzaman M, Madhavi G
    J Sep Sci, 2018 Nov;41(21):3966-3973.
    PMID: 30138541 DOI: 10.1002/jssc.201800626
    In the present study, a sensitive and fully validated liquid chromatography with mass spectrometry method was developed for the quantification of three potential genotoxic impurities in rabeprazole drug substance. The separation was achieved on Symmetry C18 column (100 × 4.6 mm, 3.5 μm) using 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at 0.5 mL/min flow rate. Triple quadrupole mass detection with electrospray ionization was operated in selected ion recording mode for the quantification of impurities. The calibration curves were demonstrated good linearity over the concentration range of 1.0-4.5 ppm for O-phenylenediamine, 1.8-4.5 ppm for 4-nitrolutidine-N-oxide and 1.0-4.5 ppm for benzyltriethylammonium chloride with respect to 10 mg/mL of rabeprazole. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 94.22 and 106.84% for all selected impurities. The method validation was carried out following International Conference on Harmonization guidelines, from which the developed method was able to quantitate the impurities at 1.0 ppm for O-phenylenediamine, 1.8 ppm for 4-nitrolutidine-N-oxide and 1.0 ppm for benzyltriethylammonium chloride. Furthermore, the proposed method was successfully evaluated for the determination of selected impurities from bulk drug and formulation samples of rabeprazole within the acceptable limits.
  5. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M
    Int J Pharm, 2018 Jul 30;546(1-2):31-38.
    PMID: 29751143 DOI: 10.1016/j.ijpharm.2018.05.021
    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.
  6. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Mol Pharm, 2018 06 04;15(6):2484-2488.
    PMID: 29762034 DOI: 10.1021/acs.molpharmaceut.8b00305
    Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
  7. Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P
    3 Biotech, 2018 May;8(5):236.
    PMID: 29744268 DOI: 10.1007/s13205-018-1253-8
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
  8. Elgharbawy AA, Alam MZ, Kabbashi NA, Moniruzzaman M, Jamal P
    3 Biotech, 2016 Dec;6(2):128.
    PMID: 28330203 DOI: 10.1007/s13205-016-0440-8
    Lignocellulosic biomasses, exhibit resistance to enzymatic hydrolysis due to the presence of lignin and hemicellulose. Ionic liquids proved their applicability in lignin degradation, however, ionic liquid removal has to be performed to proceed to hydrolysis. Therefore, this study reports an in situ hydrolysis of empty fruit bunches (EFB) that combined an ionic liquid (IL) pretreatment and enzymatic hydrolysis. For enzyme production, palm kernel cake (PKC) was used as the primary media for microbial cellulase (PKC-Cel) from Trichoderma reesei (RUTC30). The obtained enzyme exhibited a promising stability in several ionic liquids. Among few, in choline acetate [Cho]OAc, PKC-Cel retained 63.16 % of the initial activity after 6 h and lost only 10 % of its activity in 10 % IL/buffer mixture. Upon the confirmation of the PKC-Cel stability, EFB was subjected to IL-pretreatment followed by hydrolysis in a single step without further removal of the IL. The findings revealed that choline acetate [Cho]OAc and choline butyrate [Cho]Bu were among the best ILs used in the study since 0.332 ± 0.05 g glucose/g and 0.565 ± 0.08 g total reducing sugar/g EFB were obtained after 24 h of enzymatic hydrolysis. Compared to the untreated EFB, the amount of reducing sugar obtained after enzymatic hydrolysis increased by three-fold in the case of [Cho]OAc and [Cho]Bu, two-fold with [EMIM]OAc and phosphate-based ILs whereas the lowest concentration was obtained in [TBPH]OAc. Pretreatment of EFB with [Cho]OAc and [Cho]Bu showed significant differences in the morphology of EFB samples when observed with SEM. Analysis of the lignin, hemicellulose and hemicellulose showed that the total lignin content from the raw EFB was reduced from 37.8 ± 0.6 to 25.81 ± 0.35 % (w/w) upon employment of [Cho]OAc in the compatible system. The PKC-Cel from T. reesei (RUTC30) exhibited promising characteristics that need to be investigated further towards a single-step process for bioethanol production.
  9. Lieu T, Yusup S, Moniruzzaman M
    Bioresour Technol, 2016 Jul;211:248-56.
    PMID: 27019128 DOI: 10.1016/j.biortech.2016.03.105
    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.
  10. Sivapragasam M, Moniruzzaman M, Goto M
    Biotechnol J, 2016 Jun 17.
    PMID: 27312484 DOI: 10.1002/biot.201500603
    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications.
  11. Shahinuzzaman M, Yaakob Z, Moniruzzaman M
    J Cosmet Dermatol, 2016 Jun;15(2):185-93.
    PMID: 26777540 DOI: 10.1111/jocd.12209
    Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil.
  12. Rashid MH, Fardous Z, Chowdhury MA, Alam MK, Bari ML, Moniruzzaman M, et al.
    Chem Cent J, 2016;10:7.
    PMID: 26900397 DOI: 10.1186/s13065-016-0154-3
    BACKGROUND: The aim of this study was to determine the levels of cadmium (Cd), chromium (Cr), lead (Pb), arsenic (As) and selenium (Se) in (1) fresh tea leaves, (2) processed (black) tea leaves and (3) soils from tea plantations originating from Bangladesh.

    METHODS: Graphite furnace atomic absorption spectrometry (GF-AAS) was used to evaluate six digestion methods, (1) nitric acid, (2) nitric acid overnight, (3) nitric acid-hydrogen peroxide, (4) nitric-perchloric acid, (5) sulfuric acid, and (6) dry ashing, to determine the most suitable digestion method for the determination of heavy metals in the samples.

    RESULTS: The concentration ranges of Cd, Pb, As and Se in fresh tea leaves were from 0.03-0.13, 0.19-2.06 and 0.47-1.31 µg/g, respectively while processed tea contained heavy metals at different concentrations: Cd (0.04-0.16 µg/g), Cr (0.45-10.73 µg/g), Pb (0.07-1.03 µg/g), As (0.89-1.90 µg/g) and Se (0.21-10.79 µg/g). Moreover, the soil samples of tea plantations also showed a wide range of concentrations: Cd (0.11-0.45 µg/g), Pb (2.80-66.54 µg/g), As (0.78-4.49 µg/g), and Se content (0.03-0.99 µg/g). Method no. 2 provided sufficient time to digest the tea matrix and was the most efficient method for recovering Cd, Cr, Pb, As and Se. Methods 1 and 3 were also acceptable and can be relatively inexpensive, easy and fast. The heavy metal transfer factors in the investigated soil/tea samples decreased as follows: Cd > As > Se > Pb.

    CONCLUSION: Overall, the present study gives current insights into the heavy metal levels both in soils and teas commonly consumed in Bangladesh.

  13. Sarker N, Chowdhury MA, Fakhruddin AN, Fardous Z, Moniruzzaman M, Gan SH
    Biomed Res Int, 2015;2015:720341.
    PMID: 26618176 DOI: 10.1155/2015/720341
    The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.
  14. Moniruzzaman M, Rodríguez I, Rodríguez-Cabo T, Cela R, Sulaiman SA, Gan SH
    J Chromatogr A, 2014 Nov 14;1368:26-36.
    PMID: 25441341 DOI: 10.1016/j.chroma.2014.09.057
    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas.
  15. Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH
    Talanta, 2014 Nov;129:505-15.
    PMID: 25127626 DOI: 10.1016/j.talanta.2014.06.019
    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis.
  16. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
  17. Moniruzzaman M, Chowdhury MA, Rahman MA, Sulaiman SA, Gan SH
    Biomed Res Int, 2014;2014:359890.
    PMID: 24982869 DOI: 10.1155/2014/359890
    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.
  18. Chowdhury MA, Jahan I, Karim N, Alam MK, Abdur Rahman M, Moniruzzaman M, et al.
    Biomed Res Int, 2014;2014:145159.
    PMID: 24711991 DOI: 10.1155/2014/145159
    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.
  19. Moniruzzaman M, Sulaiman SA, Azlan SA, Gan SH
    Molecules, 2013;18(12):14694-710.
    PMID: 24287998 DOI: 10.3390/molecules181214694
    Honey is a good source of several important chemical compounds and antioxidants and is harvested throughout the year. However, no study has determined how their contents change over the years. The aim of the present research was to investigate the changes in the phenolics, flavonoids and antioxidant properties, as well as other physicochemical properties, of Malaysian acacia honey collected during different months during a two year period. The DPPH (1,1-diphenyl-2-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to determine the total antioxidant activity of the honey samples. Generally, honey samples collected in the beginning and the middle of the year tended to have higher sugar content, which may be attributed to its high acidic nature and low moisture content. There was a gradual increase in the phenolic content of the acacia honey samples collected between September 2010 and December 2010. The honey sample collected at the beginning of the year (January) showed the highest color intensity and was dark amber in color. It also contained the highest concentration of phenolic compounds (341.67 ± 2.94 mg(gallic acid)/kg), the highest flavonoid content (113.06 ± 6.18 mg(catechin)/kg) and the highest percentage of DPPH inhibition and the highest FRAP value, confirming its high antioxidant potential. There was a positive correlation between DPPH and total phenolic content, suggesting that phenolic compounds are the strongest contributing factor to the radical scavenging activity of Malaysian acacia honeys. Overall, our results indicated that there were significant seasonal variations in the antioxidant potentials of honey over the two year period and the time of honey collection affects its physicochemical properties. Therefore, acacia honey from Malaysia should ideally be collected during the dry season, particularly in the months of January, May and June.
  20. Moniruzzaman M, Sulaiman SA, Khalil MI, Gan SH
    Chem Cent J, 2013;7:138.
    PMID: 23938192 DOI: 10.1186/1752-153X-7-138
    The aim of the present study was to evaluate the physical, biochemical and antioxidant properties of four Malaysian monofloral types of honey (gelam, longan, rubber tree and sourwood honeys) compared to manuka honey. Several physical parameters of honey, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content, were measured. A number of biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. Hydroxymethylfurfural (HMF) levels were determined using high performance liquid chromatography.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links