Seafood samples obtained in seafood markets and supermarkets at 11 sites selected from four states in Malaysia were examined for the presence of nine potentially pathogenic species from the genus Vibrio between July 1998 and June 1999. We examined 768 sample sets that included shrimp, squid, crab, cockles, and mussels. We extensively examined shrimp samples from Selangor State to determine seasonal variation of Vibrio populations. Eight potentially pathogenic Vibrio species were detected, with overall incidence in the samples at 4.6% for V. cholerae, 4.7% for V. parahaemolyticus, 6.0% for V. vulnificus, 11% for V. alginolyticus, 9.9% for V. metschnikovii, 1.3% for V. mimicus, 13% for V. damsela, 7.6% for V. fluvialis, and 52% for a combined population of all of the above. As many as eight Vibrio species were detected in shrimp and only four in squid and peel mussels. The overall percent incidence of any of the eight vibrios was highest (82%) in cockles (Anadara granosa) among the seafoods examined and was highest (100%) in Kuching, Sarawak State, and lowest (25%) in Penang, Pulau Penang State, among the sampling sites. Of 97 strains of V. cholerae isolated, one strain belonged to the O1 serotype and 14 to the O139 serotype. The results indicate that the various seafood markets in Malaysia are contaminated with potentially pathogenic Vibrio species regardless of the season and suggest that there is a need for adequate consumer protection measures.
Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
A total of 63 beef offal samples (beef liver = 16; beef lung = 14; beef intestine = 9; beef tripe = 15; beef spleen = 9) from three wet markets (A, B, and C) in Selangor, Malaysia were examined for the prevalence and microbial load of Listeria monocytogenes. A combination of the most probable number and polymerase chain reaction (MPN-PCR) method was employed in this study. It was found that L. monocytogenes detected in 33.33% of the beef offal samples. The prevalence of L. monocytogenes in beef offal purchased from wet markets A, B, and C were 22.73%, 37.50% and 41.18% respectively. The density of L. monocytogenes in all the samples ranged from < 3 up to > 2,400 MPN/g. The findings in this study indicate that beef offal can be a potential vehicle of foodborne listeriosis.
Biofilm formation can lead to various consequences in the food processing line such as contamination and equipment breakdowns. Since formation of biofilm can occur in various conditions; this study was carried out using L. monocytogenes ATCC 19112 and its biofilm formation ability tested under various concentrations of sodium chloride and temperatures. Cultures of L. monocytogenes ATCC 19112 were placed in 96-well microtitre plate containing concentration of sodium chloride from 1-10% (w/v) and incubated at different temperature of 4 °C, 30 °C and 45 °C for up to 60 h. Absorbance reading of crystal violet staining showed the density of biofilm formed in the 96-well microtitre plates was significantly higher when incubated in 4 °C. The formation of biofilm also occurs at a faster rate at 4 °C and higher optical density (OD 570 nm) was observed at 45 °C. This shows that storage under formation of biofilm that may lead to a higher contamination along the processing line in the food industry. Formation of biofilm was found to be more dependent on temperature compared to sodium chloride stress.
Twenty-one Vibrio parahaemolyticus isolates representing 21 samples of coastal seawater from three beaches in peninsular Malaysia were found to be sensitive to streptomycin, norfloxacin and chloramphenicol. Resistance was observed to penicillin (100%), ampicillin (95.2%), carbenicilin (95.2%), erythromycin (95.2%), bacitracin (71.4%), cephalothin (28.6%), moxalactam (28.6%), kanamycin (19.1%), tetracycline (14.3%), nalidixic acid (9.5%) and gentamicin (9.5%). Plasmids of 2.6 to 35.8 mDa were detected among plasmid-containing isolates. All isolates carried the Vp-toxR gene specific to V. parahaemolyticus and were negative for the tdh gene, but only one isolate was positive for the trh gene. DNA fingerprinting of the isolates using ERIC-PCR and PFGE showed that the isolates belong to two major clonal groups, with several isolates from different locations in the same group, indicating the presence of similar strains in the different locations.
Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia.
Enterococcus species isolated from poultry sources were characterized for their resistance to antibiotics, plasmid content, presence of van genes and their diversity by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). The results showed that all isolates were multi-resistance to the antibiotics tested. Ampicillin (15/70) followed by chloramphenicol (37/70) were the most active antibiotics tested against the Enterococcus spp. isolates, while the overall resistant rates against the other antibiotics were between 64.3% to 100%. All vancomycin-resistant E. faecalis, E. durans, E. hirae and E. faecium isolates tested by the disk diffusion assay were positive in PCR detection for presence of vanA gene. All E. casseliflavus isolates were positive for vanC2/C3 gene. However, none of the Enterococcus spp. isolates were positive for vanB and vanC1 genes. Plasmids ranging in sizes between 1.1 to ca. 35.8 MDa were detected in 38/70 of the Enterococcus isolates. When the genetic relationship among all isolates of the individual species were tested by RAPD-PCR, genetic differences detected suggested a high genetic polymorphisms of isolates in each individual species. Our results indicates that further epidemiological studies are necessary to elucidate the role of food animals as reservoir of VRE and the public health significance of infections caused by Enterococcus spp.
Nine Escherichia coli O157: H7/- strains isolated primarily from non-clinical sources in Thailand and Japan carried the stx(2) gene but did not produce Stx2 toxin in a reversed passive latex agglutination (RPLA) assay. A strain (EDL933) bearing a stx(2) phage (933W) was compared to a strain (Thai-12) that was Stx2-negative but contained the stx(2) gene. To study the lack of Stx2 production, the Thai-12 stx(2) gene and its upstream nucleotide sequence were analyzed. The Thai-12 stx(2) coding region was intact and Stx2 was expressed from a cloned stx(2) gene using a plasmid vector and detected using RPLA. A lacZ fusion analysis found the Thai-12 stx(2) promoter non-functional. Because the stx(2) gene is downstream of the late promoter in the stx(2) phage genome, the antitermination activity of Q protein is essential for strong stx(2) transcription. Thai-12 had the q gene highly homologous to that of Phi21 phage but not to the 933W phage. High-level expression of exogenous q genes demonstrated Q antitermination activity was weak in Thai-12. Replication of stx(2) phage was not observed in Stx2-negative strains. The q-stx(2) gene sequence of Thai-12 was well conserved in all Stx2-negative strains. A PCR assay to detect the Thai-12 q-stx(2) sequence demonstrated that 30% of O157 strains from marketed Malaysian beef carried this sequence and they produced little or no Stx2. These results suggest that stx(2)-positive O157 strains that produce little or no Stx2 may be widely distributed in the Asian environment.
We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE).
Silver nanoparticles (AgNPs) used in this study were synthesized using pu-erh tea leaves extract with particle size of 4.06 nm. The antibacterial activity of green synthesized AgNPs against a diverse range of Gram-negative foodborne pathogens was determined using disk diffusion method, resazurin microtitre-plate assay (minimum inhibitory concentration, MIC), and minimum bactericidal concentration test (MBC). The MIC and MBC of AgNPs against Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, and Salmonella Enteritidis were 7.8, 3.9, 3.9, 3.9 and 7.8, 3.9, 7.8, 3.9 μg/mL, respectively. Time-kill curves were used to evaluate the concentration between MIC and bactericidal activity of AgNPs at concentrations ranging from 0×MIC to 8×MIC. The killing activity of AgNPs was fast acting against all the Gram-negative bacteria tested; the reduction in the number of CFU mL-1 was >3 Log10 units (99.9%) in 1-2 h. This study indicates that AgNPs exhibit a strong antimicrobial activity and thus might be developed as a new type of antimicrobial agents for the treatment of bacterial infection including multidrug resistant bacterial infection.
Twelve strains of Escherichia coli O157:H7 were isolated from 9 of 25 beef samples purchased from retail stores in Malaysia. These strains produced Shiga toxin 2 with or without Shiga toxin 1 and had the eae gene and a 60-MDa plasmid. The antibiograms and the profiles of the arbitrarily primed PCR of the strains were diverse, suggesting that the strains may have originated from diverse sources.
A total of 216 chicken offal samples (chicken liver = 72; chicken heart = 72; chicken gizzard = 72) from wet markets and hypermarkets in Selangor, Malaysia, were examined for the presence and density of Listeria monocytogenes by using a combination of the most probable number and PCR method. The prevalence of L. monocytogenes in 216 chicken offal samples examined was 26.39%, and among the positive samples, the chicken gizzard showed the highest percentage at 33.33% compared with chicken liver (25.00%) and chicken heart (20.83%). The microbial load of L. monocytogenes in chicken offal samples ranged from <3 to 93.0 most probable number per gram. The presence of L. monocytogenes in chicken offal samples may indicate that chicken offal can act as a possible vehicle for the occurrence of foodborne listeriosis. Hence, there is a need to investigate the biosafety level of chicken offal in Malaysia.
This study aimed to determine the prevalence Listeria monocytogenes in raw chicken meat samples at hypermarkets and wet markets. Chicken drumsticks, breasts, and thighs were randomly selected. The most probable number (MPN) PCR method was used to quantify the L. monocytogenes in the samples. Listeria monocytogenes was detected in 20% of the samples. Occurrence of L. monocytogenes was highest in breast (42.03%) followed by drumstick (11.27%) and thigh (7.14%). Samples from hypermarkets showed higher occurrence (25.71%) of L. monocytogenes compared with wet markets (14.29%). The density of L. monocytogenes found in samples ranged from <3.0 to 16 MPN•g(-1). The presence of L. monocytogenes in raw chicken meat is unwanted but unpreventable. Thus, further research on the processing method to reduce and eliminate this kind of bacteria in chicken meat before consumption is necessary. The presence of L. monocytogenes in chicken samples suggests the importance of this pathogen in chicken. Thus, more study is needed to find ways to eliminate this pathogen from poultry.
There have been a number of studies conducted in order to compare the efficiencies of recovery rates, utilizing different protocols, for the isolation of L. monocytogenes. However, the severity of multiple cell injury has not been included in these studies. In the current study, L. monocytogenes ATCC 19112 was injured by exposure to extreme temperatures (60°C and -20°C) for a one-step injury, and for a two-step injury the cells were transferred directly from a heat treatment to frozen state to induce a severe cell injury (up to 100% injury). The injured cells were then subjected to the US Food and Drug Administration (FDA), the ISO-11290, and the modified United States Department of Agriculture (mUSDA) protocols, and plated on TSAyeast (0.6% yeast), PALCAM agar, and CHROMAgar Listeria for 24 h or 48 h. The evaluation of the total recovery of injured cells was also calculated based on the costs involved in the preparation of media for each protocol. Results indicate that the mUSDA method is best able to aid the recovery of heat-injured, freeze-injured, and heat-freeze-injured cells and was shown to be the most cost effective for heat-freeze-injured cells.
The aim of the present study was to examine the prevalence of thermophilic Campylobacter spp. (Campylobacter jejuni and Campylobacter coli) in soil, poultry manure, irrigation water, and freshly harvested vegetables from vegetable farms in Malaysia. C. jejuni was detected in 30.4% and 2.7% of the soil samples, 57.1% and 0% of the manure samples, and 18.8% and 3% of the vegetable samples from farm A and farm B, respectively, when using the MPNPCR method. Campylobacter spp. was not found in any of the irrigation water samples tested. Therefore, the present results indicate that the aged manure used by farm A was more contaminated than the composted manure used by farm B. Mostly, the leafy and root vegetables were contaminated. C. coli was not detected in any of the samples tested in the current study. Both farms tested in this study were found to be contaminated by campylobacters, thereby posing a potential risk for raw vegetable consumption in Malaysia. The present results also provide baseline data on Campylobacter contamination at the farm level.
The purpose of this study was to investigate the biosafety of Vibrio parahaemolyticus in raw salad vegetables at wet market and supermarket in Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of V. parahaemolyticus and to enumerate their density in the food samples. The study analyzed 276 samples of common vegetables eaten raw in Malaysia (Wild cosmos = 8; Japanese parsley = 21; Cabbage = 30; Lettuce = 16; Indian pennywort = 17; Carrot = 31; Sweet potato = 29; Tomato = 38; Cucumber = 28; Four winged bean = 26; Long bean = 32). The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). The occurrence of V. parahaemolyticus detected was 20.65%, with higher frequency of V. parahaemolyticus in vegetables obtained from wet markets (Wet market C = 27.27%Wet Market D = 32.05%) compared to supermarkets (Supermarket A = 1.64%; Supermarket B = 16.67%). V. parahaemolyticus was most prevalent in Indian pennywort (41.18%). The density of V. parahaemolyticus in all the samples ranged from <3 up to >2400 MPN/g, mostly <3 MPN/g concentration. Raw vegetables from wet markets contained higher levels of V. parahaemolyticus compared to supermarkets. V. parahaemolyticus were present in raw vegetables although in low numbers. The results suggest that raw vegetables act as a transmission route for V. parahaemolyticus. This study will be the first biosafety assessment of V. parahaemolyticus in raw vegetables in Malaysia.
This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.
Vibrio parahaemolyticus is a foodborne bacterial pathogen that may cause gastroenteritis in humans through the consumption of seafood contaminated with this microorganism. The emergence of antimicrobial and multidrug-resistant bacteria is another serious public health threat worldwide. In this study, the prevalence and antibiotic susceptibility test of V. parahaemolyticus in blood clams, shrimps, surf clams, and squids were determined. The overall prevalence of V. parahaemolyticus in seafood was 85.71% (120/140), consisting of 91.43% (32/35) in blood clam, 88.57% (31/35) in shrimps, 82.86% (29/35) in surf clams, and 80% (28/35) in squids. The majority of V. parahaemolyticus isolates from the seafood samples were found to be susceptible to most antibiotics except ampicillin, cefazolin, and penicillin. The MAR indices of V. parahaemolyticus isolates ranged from 0.04 to 0.71 and about 90.83% of isolates were found resistant to more than one antibiotic. The high prevalence of V. parahaemolyticus in seafood and multidrug-resistant isolates detected in this study could pose a potential risk to human health and hence appropriate control methods should be in place to minimize the potential contamination and prevent the emergence of antibiotic resistance.
Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.