Displaying publications 41 - 60 of 88 in total

Abstract:
Sort:
  1. Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO
    Eur J Med Chem, 2011 Jun;46(6):2513-29.
    PMID: 21482446 DOI: 10.1016/j.ejmech.2011.03.040
    Peroxisome Proliferator-Activated Receptor γ (PPARγ) activators have drawn great recent attention in the clinical management of type 2 diabetes mellitus, prompting several attempts to discover and optimize new PPARγ activators. With this in mind, we explored the pharmacophoric space of PPARγ using seven diverse sets of activators. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent and predictive quantitative structure-activity relationship (QSAR) (r2(71)=0.80, F=270.3, r2LOO=0.73, r2PRESS against 17 external test inhibitors=0.67). Three orthogonal pharmacophores emerged in the QSAR equation and were validated by receiver operating characteristic (ROC) curves analysis. The models were then used to screen the national cancer institute (NCI) list of compounds. The highest-ranking hits were tested in vitro. The most potent hits illustrated EC50 values of 15 and 224 nM.
  2. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A
    Heliyon, 2020 Nov;6(11):e05365.
    PMID: 33251348 DOI: 10.1016/j.heliyon.2020.e05365
    Background: Conventional drug delivery systems have some major drawbacks such as low bioavailability, short residence time and rapid precorneal drainage. An in situ gel drug delivery system provides several benefits, such as prolonged pharmacological duration of action, simpler production techniques, and low cost of manufacturing. This research aims to get the optimum formula of chloramphenicol in situ gel based on the physical evaluation.

    Methods: The effects of independent variables (poloxamer 407 and hydroxypropyl methyl cellulose (HPMC) concentration) on various dependent variables (gelling capacity, pH and viscosity) were investigated by using 32 factorial design and organoleptic evaluation was done with descriptive analysis.

    Results: The optimized formula of chloramphenicol in situ gel yielded 9 variations of poloxamer 407 and HPMC bases composition in % w/v as follows, F1 (5; 0.45), F2 (7.5; 0.45), F3 (10; 0.45), F4 (5; 0.725), F5 (7.5; 0.725), F6 (10; 0.725), F7 (5; 1), F8 (7.5; 1), F9 (10; 1). The results indicated that the organoleptic, pH, and gelling capacity parameters matched all formulas (F1-F9), however, the viscosity parameter only matched F3, F6, F8, and F9. Based on factorial design, F6 had the best formula with desirability value of 0.54, but the design recommended that formula with the composition bases of poloxamer 407 and HPMC at the ratio of 8.16 % w/v and 0.77 % w/v, respectively, was the optimum formula with a desirability value of 0.69.

    Conclusion: All formulas have met the Indonesian pharmacopoeia requirements based on the physical evaluation, especially formula 6 (F6), which was supported by the result of factorial design analysis.

  3. Wahab HA, Choong YS, Ibrahim P, Sadikun A, Scior T
    J Chem Inf Model, 2009 Jan;49(1):97-107.
    PMID: 19067649 DOI: 10.1021/ci8001342
    The continuing rise in tuberculosis incidence and the problem of drug resistance strains have prompted the research on new drug candidates and the mechanism of drug resistance. Molecular docking and molecular dynamics simulation (MD) were performed to study the binding of isoniazid onto the active site of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) in an attempt to address the mycobacterial resistance against isoniazid. Results show that isonicotinic acyl-NADH (INADH) has an extremely high binding affinity toward the wild type InhA by forming stronger interactions compared to the parent drug (isoniazid) (INH). Due to the increase of hydrophobicity and reduction in the side chain's volume of A94 of mutant type InhA, both INADH and the mutated protein become more mobile. Due to this reason, the molecular interactions of INADH with mutant type are weaker than that observed with the wild type. However, the reduced interaction caused by the fluctuation of INADH and the mutant protein only inflected minor resistance in the mutant strain as inferred from free energy calculation. MD results also showed there exists a water-mediated hydrogen bond between INADH and InhA. However, the bridged water molecule is only present in the INADH-wild type complex, reflecting the putative role of the water molecule in the binding of INADH to the wild type protein. The results support the assumption that the conversion of prodrug isoniazid into its active form INADH is mediated by KatG as a necessary step prior to target binding on InhA. Our findings also contribute to a better understanding of INH resistance in mutant type.
  4. Mohseni J, Al-Najjar BO, Wahab HA, Zabidi-Hussin ZA, Sasongko TH
    J Hum Genet, 2016 Sep;61(9):823-30.
    PMID: 27251006 DOI: 10.1038/jhg.2016.61
    Several histone deacetylase inhibitors (HDACis) are known to increase Survival Motor Neuron 2 (SMN2) expression for the therapy of spinal muscular atrophy (SMA). We aimed to compare the effects of suberoylanilide hydroxamic acid (SAHA) and Dacinostat, a novel HDACi, on SMN2 expression and to elucidate their acetylation effects on the methylation of the SMN2. Cell-based assays using type I and type II SMA fibroblasts examined changes in transcript expressions, methylation levels and protein expressions. In silico methods analyzed the intermolecular interactions between each compound and HDAC2/HDAC7. SMN2 mRNA transcript levels and SMN protein levels showed notable increases in both cell types, except for Dacinostat exposure on type II cells. However, combined compound exposures showed less pronounced increase in SMN2 transcript and SMN protein level. Acetylation effects of SAHA and Dacinostat promoted demethylation of the SMN2 promoter. The in silico analyses revealed identical binding sites for both compounds in HDACs, which could explain the limited effects of the combined exposure. With the exception on the effect of Dacinostat in Type II cells, we have shown that SAHA and Dacinostat increased SMN2 transcript and protein levels and promoted demethylation of the SMN2 gene.
  5. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
  6. Hariono M, Wahab HA, Tan ML, Rosli MM, Razak IA
    PMID: 24764997 DOI: 10.1107/S1600536814001986
    In the title compound, C19H17N5S, the dihedral angles between the purine ring system (r.m.s. deviation = 0.009 Å) and the S-bound and methyl-ene-bound phenyl rings are 74.67 (8) and 71.28 (7)°, respectively. In the crystal, inversion dimers linked by pairs of N-H⋯N hydrogen bonds generate R 2 (2)(8) loops. C-H⋯N inter-actions link the dimers into (100) sheets.
  7. Othman R, Wahab HA, Yusof R, Rahman NA
    In Silico Biol. (Gedrukt), 2007;7(2):215-24.
    PMID: 17688447
    Multiple sequence alignment was performed against eight proteases from the Flaviviridae family using ClustalW to illustrate conserved domains. Two sets of prediction approaches were applied and the results compared. Firstly, secondary structure prediction was performed using available structure prediction servers. The second approach made use of the information on the secondary structures extracted from structure prediction servers, threading techniques and DSSP database of some of the templates used in the threading techniques. Consensus on the one-dimensional secondary structure of Den2 protease was obtained from each approach and evaluated against data from the recently crystallised Den2 NS2B/NS3 obtained from the Protein Data Bank (PDB). Results indicated the second approach to show higher accuracy compared to the use of prediction servers only. Thus, it is plausible that this approach is applicable to the initial stage of structural studies of proteins with low amino acid sequence homology against other available proteins in the PDB.
  8. Rawa MSA, Nogawa T, Okano A, Futamura Y, Nakamura T, Wahab HA, et al.
    Biosci Biotechnol Biochem, 2021 Jan 07;85(1):69-76.
    PMID: 33577647 DOI: 10.1093/bbb/zbaa051
    A new peptaibol, RK-026A (1) was isolated from a fungus, Trichoderma sp. RK10-F026, along with atroviridin B (2), alamethicin II (3), and polysporin B (4) as a cytotoxic compound, which was selected by principal component analysis of the MS data from 5 different culture conditions. The structure of 1 was determined as a new atroviridin B derivative containing Glu at the 18th residue instead of Gln by NMR and HR-MS analyses including the investigation of detailed MS/MS fragmentations. 1 showed cytotoxicity toward K562 leukemia cells at an IC50 value of 4.1 µm.
  9. Rawa MSA, Nogawa T, Okano A, Futamura Y, Wahab HA, Osada H
    J Antibiot (Tokyo), 2021 08;74(8):485-495.
    PMID: 34163024 DOI: 10.1038/s41429-021-00429-y
    Six new 11-mer peptaibols designed as zealpeptaibolins, A - F were isolated from the soil fungus, Trichoderma sp. RK10-F026, based on the principal component analysis of the MS data from five different culture compositions. Previously, 20-mer peptaibols from the same fungal strain were identified; 11-mer peptaibols in contrast were discovered from a different culture condition, signifying peptaibol production was culture condition-dependent. These peptaibols contained three Aib-Pro motifs in the sequence. The structures were established by NMR and HR-MS experiments including detailed MS/MS fragmentations. The absolute configurations were determined by Marfey's analysis. Zealpeptaibolin F exhibited the strongest cytotoxicity toward K562 leukemia cells with an IC50 value of 0.91 µM.
  10. Kwong MMY, Lee JW, Samian MR, Wahab HA, Watanabe N, Ong EBB
    Cells, 2021 10 11;10(10).
    PMID: 34685698 DOI: 10.3390/cells10102718
    Certain plant extracts (PEs) contain bioactive compounds that have antioxidant and lifespan-extending activities on organisms. These PEs play different roles in cellular processes, such as enhancing stress resistance and modulating longevity-defined signaling pathways that contribute to longevity. Here, we report the discovery of PEs that extended chronological life span (CLS) in budding yeast from a screen of 222 PEs. We identified two PEs, the leaf extracts of Manihot esculenta and Wodyetia bifurcata that extended CLS in a dose-dependent manner. The CLS-extending PEs also conferred oxidative stress tolerance, suggesting that these PEs might extend yeast CLS through the upregulation of stress response pathways.
  11. Choi SB, Choong YS, Saito A, Wahab HA, Najimudin N, Watanabe N, et al.
    Mol Inform, 2014 Dec;33(11-12):742-8.
    PMID: 27485420 DOI: 10.1002/minf.201400080
    Present HIV antiviral therapy only targets structural proteins of HIV, but evidence shows that the targeting of accessory proteins will expand our options in combating HIV. HIV-1 Vpr, a multifunctional accessory protein involved in viral infection, replication and pathogenesis, is a potential target. Previously, we have shown that phenyl coumarin compounds can inhibit the growth arrest activity of Vpr in host cells and predicted that the inhibitors' binding site is a hydrophobic pocket on Vpr. To investigate our prediction of the inhibitors' binding site, we docked the coumarin inhibitors into the predicted hydrophobic binding pocket on a built model of Vpr and observed a linear trend between their calculated binding energies and prior experimentally determined potencies. Subsequently, to analyze the inhibitor-protein binding interactions in detail, we built homology models of Vpr mutants and performed docking studies on these models too. The results revealed that structural changes on the binding pocket that were caused by the mutations affected inhibitor binding. Overall, this study showed that the binding energies of the docked molecules are good indicators of the activity of the inhibitors. Thus, the model can be used in virtual screening to identify other Vpr inhibitors and for designing more potent inhibitors.
  12. Kurniawansyah IS, Rusdiana T, Sopyan I, Desy Arya IF, Wahab HA, Nurzanah D
    Gels, 2023 Aug 10;9(8).
    PMID: 37623100 DOI: 10.3390/gels9080645
    In recent years, in situ gel delivery systems have received a great deal of attention among pharmacists. The in situ gelation mechanism has several advantages over ointments, the most notable being the ability to provide regular and continuous drug delivery with no impact on visual clarity. Bioavailability, penetration, duration, and maximum medication efficacy are all improved by this mechanism. Our review systematically synthesizes and discusses comparisons between three types of in situ gelling system according to their phase change performance based on the physicochemical aspect from publications indexed in the Pubmed, ResearchGate, Scopus, Elsevier, and Google Scholar databases. An optimal temperature-sensitive in situ gelling solution must have a phase change temperature greater than ambient temperature (25 °C) to be able to be readily delivered to the eye; hence, it was fabricated at 35 °C, which is the precorneal temperature. In a pH-sensitive gelling system, a gel develops immediately when the bio-stimuli come into contact with it. An in situ gelling system with ionic strength-triggered medication can also perhaps be used in optical drug-delivery mechanisms. In studies about the release behavior of drugs from in situ gels, different models have been used such as zero-order kinetics, first-order kinetics, the Higuchi model, and the Korsmeyer-Peppas, Peppas-Sahlin and Weibull models. In conclusion, the optimum triggering approach for forming gels in situ is determined by a certain therapeutic delivery application combined with the physico-chemical qualities sought.
  13. Teh BA, Choi SB, Musa N, Ling FL, Cun ST, Salleh AB, et al.
    BMC Struct Biol, 2014;14:7.
    PMID: 24499172 DOI: 10.1186/1472-6807-14-7
    Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets.
  14. Mohamad S, Zin NM, Wahab HA, Ibrahim P, Sulaiman SF, Zahariluddin AS, et al.
    J Ethnopharmacol, 2011 Feb 16;133(3):1021-6.
    PMID: 21094237 DOI: 10.1016/j.jep.2010.11.037
    Many local plants are used in Malaysian traditional medicine to treat respiratory diseases including symptoms of tuberculosis. The aim of the study was to screen 78 plant extracts from 70 Malaysian plant species used in traditional medicine to treat respiratory diseases including symptoms of tuberculosis for activity against Mycobacterium tuberculosis H37Rv using a colorimetric microplate-based assay.
  15. Wahab HA, Yam WK, Samian MR, Najimudin N
    J Biomol Struct Dyn, 2008 Aug;26(1):131-46.
    PMID: 18533733
    Macrolides are a group of diverse class of naturally occurring and synthetic antibiotics made of macrocyclic-lactone ring carrying one or more sugar moieties linked to various atoms of the lactone ring. These macrolides selectively bind to a single high affinity site on the prokaryotic 50S ribosomal subunit, making them highly effective towards a wide range of bacterial pathogens. The understanding of binding between macrolides and ribosome serves a good basis in elucidating how they work at the molecular level and these findings would be important in rational drug design. Here, we report refinement of reconstructed PDB structure of erythromycin-ribosome system using molecular dynamics (MD) simulation. Interesting findings were observed in this refinement stage that could improve the understanding of the binding of erythromycin A (ERYA) onto the 50S subunit. The results showed ERYA was highly hydrated and water molecules were found to be important in bridging hydrogen bond at the binding pocket during the simulation time. ERYA binding to ribosome was also strengthened by hydrogen bond network and hydrophobic interactions between the antibiotic and the ribosome. Our MD simulation also demonstrated direct interaction of ERYA with Domains II, V and with C1773 (U1782EC), a residue in Domain IV that has yet been described of its role in ERYA binding. It is hoped that this refinement will serve as a starting model for a further enhancement of our understanding towards the binding of ERYA to ribosome.
  16. Wahab HA, Ahmad Khairudin NB, Samian MR, Najimudin N
    BMC Struct Biol, 2006;6:23.
    PMID: 17076907
    Polyhydroxyalkanoates (PHA), are biodegradable polyesters derived from many microorganisms such as the pseudomonads. These polyesters are in great demand especially in the packaging industries, the medical line as well as the paint industries. The enzyme responsible in catalyzing the formation of PHA is PHA synthase. Due to the limited structural information, its functional properties including catalysis are lacking. Therefore, this study seeks to investigate the structural properties as well as its catalytic mechanism by predicting the three-dimensional (3D) model of the Type II Pseudomonas sp. USM 4-55 PHA synthase 1 (PhaC1P.sp USM 4-55).
  17. Khaw KY, Choi SB, Tan SC, Wahab HA, Chan KL, Murugaiyah V
    Phytomedicine, 2014 Sep 25;21(11):1303-9.
    PMID: 25172794 DOI: 10.1016/j.phymed.2014.06.017
    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations.
  18. Mazlan MKN, Mohd Tazizi MHD, Ahmad R, Noh MAA, Bakhtiar A, Wahab HA, et al.
    Antibiotics (Basel), 2021 Jul 25;10(8).
    PMID: 34438958 DOI: 10.3390/antibiotics10080908
    Mycobacterium tuberculosis (Mtb) is the microorganism that causes tuberculosis. This infectious disease has been around for centuries, with the earliest record of Mtb around three million years ago. The discovery of the antituberculosis agents in the 20th century has managed to improve the recovery rate and reduce the death rate tremendously. However, the conventional antituberculosis therapy is complicated by the development of resistant strains and adverse drug reactions experienced by the patients. Research has been conducted continuously to discover new, safe, and effective antituberculosis drugs. In the last 50 years, only two molecules were approved despite laborious work and costly research. The repurposing of drugs is also being done with few drugs; antibiotics, particularly, were found to have antituberculosis activity. Besides the discovery work, enhancing the delivery of currently available antituberculosis drugs is also being researched. Targeted drug delivery may be a potentially useful approach to be developed into clinically accepted treatment modalities. Active targeting utilizes a specifically designed targeting agent to deliver a chemically conjugated drug(s) towards Mtb. Passive targeting is very widely explored, with the development of multiple types of nanoparticles from organic and inorganic materials. The nanoparticles will be engulfed by macrophages and this will eliminate the Mtb that is present in the macrophages, or the encapsulated drug may be released at the sites of infections that may be in the form of intra- and extrapulmonary tuberculosis. This article provided an overview on the history of tuberculosis and the currently available treatment options, followed by discussions on the discovery of new antituberculosis drugs and active and passive targeting approaches against Mycobacterium tuberculosis.
  19. Mazzolari A, Nunes-Alves A, Wahab HA, Amaro RE, Cournia Z, Merz KM
    J Chem Inf Model, 2020 07 27;60(7):3328-3330.
    PMID: 32623887 DOI: 10.1021/acs.jcim.0c00636
    In this Viewpoint, we provide a commentary on the impact of the Journal of Chemical Information and Modeling Special Issue on Women in Computational Chemistry published in May 2019 and the feedback we received.
  20. Vargas-Nadal G, Köber M, Nsamela A, Terenziani F, Sissa C, Pescina S, et al.
    Pharmaceutics, 2022 Nov 17;14(11).
    PMID: 36432688 DOI: 10.3390/pharmaceutics14112498
    Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links