Displaying publications 41 - 60 of 193 in total

Abstract:
Sort:
  1. Azizan N, Myint O, Wynn AA, Thein TT, Hayati F, Nik Lah NAS
    Int J Surg Case Rep, 2020;72:63-65.
    PMID: 32506033 DOI: 10.1016/j.ijscr.2020.05.056
    INTRODUCTION: Adrenal myelolipoma is a rare, non-functional, benign neoplasm which is constituted of mature haematopoietic elements and adipose tissues in various proportions. It is diagnosed accidentally and frequently with the widespread use of imaging modalities.

    PRESENTATION OF CASE: We report a 63-year-old lady with incidental findings of adrenal tumour on computed tomography (CT) scan during a routine medical check-up. She underwent tumour resection in view of a large tumour of 7 cm in size.

    DISCUSSION: CT scan is sensitive to diagnose adrenal myelolipoma in view of its fat-laden property and useful to monitor the tumour progress. Even previously she opted for conservative management; the decision for surgery was made in view of enlarging tumour and risk of surrounding tissue compression.

    CONCLUSION: With increased awareness, the detection rate of this tumour is improving, hence able to prevent the complications of a large tumour such as compression, bleeding and tumour necrosis.

    Matched MeSH terms: Adipose Tissue
  2. Asma’ Ali, Nurul Atiqah Khasbullah, Fauziah Tufail Ahmad, Hayati Mohd Yusof
    MyJurnal
    Introduction: There is an emergent increase of ultra-processed food consumption in developing countries including Malaysia which carries a likelihood towards the increase of obesity. However, few studies have been done in relating between ultra-processed consumption and obesity, especially in Malaysia. Therefore, this study aims to determine the consumption of ultra-processed foods and its relationship with BMI and body fat percentage among university committee in Kuala Nerus, Terengganu. Methods: A cross-sectional study was performed among 167 individuals aged 18 to 59 years old in Kuala Nerus. Data were collected using a researcher-administered questionnaire which consisted of three different sections: socio-demographic profile, two days 24-hour dietary recall, and nutritional status assessment on BMI and body fat percentage. Consumption of ultra-processed foods were determined by classifying two days 24-hour dietary recall based on ultra-processed food classification. Data were analyzed using SPSS version 21.0 with p
    Matched MeSH terms: Adipose Tissue
  3. Low, Pei Kit, Hazizi Abu Saad, Rosita Jamaluddin, Chee, Huei Phing
    MyJurnal
    Introduction: Overweight and obesity has been emerging as one of the most common and preventable
    nutritional problems worldwide. In 2016, 39% and 13% of the adult population worldwide was classified as
    overweight and obese, respectively. Materials and Methods: We conducted a cross-sectional study at 12
    selected health clinics in Perak, Malaysia, and we used multi-stage cluster random sampling to determine the
    prevalence of overweight and obesity among the primary healthcare workers and the associate factors of
    obesity indices. Each respondent was required to complete a self-administered questionnaire on their sociodemographic characteristics. In addition, we took anthropometric measurements, including height, weight,
    BMI, waist circumference, and body fat percentage, of the participants. Results: We recruited 261 primary
    healthcare workers. Overall, 49.9% of the healthcare workers were overweight or obese, 51.0% were at risk
    of having abdominal obesity, and 79.6% had a high body fat percentages. Age and self-reported health status
    were significantly associated with all the obesity indices. Educational level showed significant association
    with BMI and waist circumference, while occupational status showed an association only with BMI. Older age
    and professionals were predictors for high obesity indices. Conclusion: The prevalence of obesity among the
    primary healthcare workers was higher than among the general population. An immediate intervention
    programme is needed to reduce the prevalence of overweight and obesity among primary healthcare
    workers.
    Matched MeSH terms: Adipose Tissue
  4. Nur Raihan Esa, Nor Azwani Mohd Shukri, Norsham Ahmad, Mohd Radzi Hilmi, Md Muziman Syah Md Mustafa, Nura Syahiera Ibrahim, et al.
    MyJurnal
    Introduction: Short-term fasting may influence intraocular pressure (IOP) due to alteration of fluid (total body water;
    TBW, and water intake) and fat (total body fat; TBF). This study aimed: i) to compare IOP values within and between,
    fasting and non-fasting periods; and ii) to assess the association between IOP and, TBW and TBF. Methods: Thirty
    healthy participants aged 21.8±1.1 years were assessed on two different periods (fasting vs. non-fasting). During each
    period, the IOP, TBW and TBF values were assessed for four times (morning, afternoon, evening, late-evening). The
    IOP was measured using AccuPen® tonopen, while TBW and TBF were assessed by using a Tanita body composition
    analyser. Results: During fasting, the IOP value in the afternoon (14.53±2.33 mmHg) was significantly higher than in
    the evening (12.43±2.73 mmHg, p=0.009) and late-evening (12.60±2.44 mmHg, p=0.003). No significant difference
    in IOP was observed during non-fasting period. The mean of IOP in the evening was significantly lower during fasting
    compared to non-fasting (12.43±2.73 mmHg vs 13.75±2.53 mmHg, p=0.044). The IOP and TBW were negatively
    correlated (r=-0.268; p=0.011) during non-fasting and showed no association during fasting period. There was no
    significant correlation between IOP and TBF during both fasting and non-fasting periods. Conclusion: IOP reduction
    during short-term fasting, together with the no association with TBF and TBW suggested that IOP is an independent
    factor that reduces during fasting in healthy population.
    Matched MeSH terms: Adipose Tissue
  5. Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1292:83-95.
    PMID: 31916234 DOI: 10.1007/5584_2019_464
    INTRODUCTION: Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated.

    METHODS: Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics.

    RESULTS: The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells.

    CONCLUSION: Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.

    Matched MeSH terms: Adipose Tissue/cytology*
  6. Mahnon Suria Mokhy, Rosita Jamaluddin, Abd Rasyid Ismail, Woan Yie Siah, Norhasmah Sulaiman, Siti Nur ‘Asyura Adznam, et al.
    MyJurnal
    This article aimed to review the available anthropometry measurements used in the assessment of nutritional sta- tus among Cerebral Palsy (CP) children. Searched journals were from Medline, PubMed and Ovid published from 2015 to 2018. The search identified 443 articles, and eight studies met the criteria. Anthropometric measurements included weight, height, recumbent length, knee height, tibia length, Dual-energy X-ray absorptiometry (DXA), Bio- electrical impedance (BIA), Mid arm circumference (MUAC) subscapular skinfold (SFT), Triceps skinfold (TSF) and prediction equations. Body fat composition can be obtained by DXA, BIA, skinfold measurement, and also prediction equation. The predictive equation is the most reported method to determine nutritional status among CP. This review found that TSF and SFT are more accurate to determine body fat percentage when using together with the predictive equation. Besides, predictive equations using segmental length are reliable in estimating the height and can be used to evaluate the nutritional status using the specific CP growth chart.
    Matched MeSH terms: Adipose Tissue
  7. Das S, Mohamed IN, Teoh SL, Thevaraj T, Ku Ahmad Nasir KN, Zawawi A, et al.
    Mini Rev Med Chem, 2020;20(7):626-635.
    PMID: 31969099 DOI: 10.2174/1389557520666200122124445
    The incidence of Metabolic Syndrome (MetS) has risen globally. MetS includes a combination of features, i.e. blood glucose impairment, excess abdominal/body fat dyslipidemia and elevated blood pressure. Other than conventional treatment with drugs, the main preventive approaches include lifestyle changes, weight loss, diet control and adequate exercise also proves to be beneficial. MicroRNAs (miRNAs) are small non-coding RNAs that play critical regulatory roles in most biological and pathological processes. In the present review, we discuss various miRNAs which are related to MetS by targeting various organs, including the pancreas, liver, skeletal muscles and adipose tissues. These miRNAs have the effect on insulin production and secretion (miR-9, miR-124a, miR-130a,b, miR152, miR-335, miR-375), insulin resistance (miR-29), adipogenesis (miR-143, miR148a) and lipid metabolism (miR-192). We also discuss the miRNAs as potential biomarkers and future therapeutic targets. This review may be beneficial for molecular biologists and clinicians dealing with MetS.
    Matched MeSH terms: Adipose Tissue
  8. Ahmad B, Serpell CJ, Fong IL, Wong EH
    Front Mol Biosci, 2020;7:76.
    PMID: 32457917 DOI: 10.3389/fmolb.2020.00076
    Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis - it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
    Matched MeSH terms: Adipose Tissue, Brown; Adipose Tissue, White
  9. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    PMID: 31817937 DOI: 10.3390/ijerph16244987
    Metabolic syndrome (MetS) is a group of conditions including central obesity, hyperglycemia, dyslipidemia, and hypertension that increases the risk for cardiometabolic diseases. Kelulut honey (KH) produced by stingless honey bees has stronger antioxidant properties compared to other honey types and may be a functional food against MetS. This study aimed to determine the efficacy of KH in preventing metabolic changes in rats with MetS induced by high-carbohydrate and high-fat (HCHF) diet. Male Wistar rats were randomly assigned to the control (C), HCHF diet-induced MetS (S), and MetS supplemented with KH (K) groups. The K group was given KH (1 g/kg/day) for eight weeks. Compared to the control, the S group had significant higher omental fat mass, serum triglyceride, systolic blood pressure, diastolic blood pressures, adipocyte area, and adipocyte perimeter (p < 0.05). KH supplementation significantly prevented these MetS-induced changes at week 16 (p < 0.05). Several compounds, including 4-hydroxyphenyl acetic acid, coumaric and caffeic acids, had been detected via liquid chromatography-mass spectrometry analysis that might contribute to the reversal of these changes. The beneficial effects of KH against MetS-induced rats provide the basis for future KH research to investigate its potential use in humans and its molecular mechanisms in alleviating the disease.
    Matched MeSH terms: Adipose Tissue/drug effects
  10. Lau WK, Noruddin NAA, Ariffin AH, Mahmud MZ, Noor MHM, Amanah A, et al.
    BMC Complement Altern Med, 2019 Sep 05;19(1):243.
    PMID: 31488120 DOI: 10.1186/s12906-019-2640-3
    BACKGROUND: Brown adipocytes are known to promote energy expenditure and limit weight gain to combat obesity. Averrhoa bilimbi, locally called belimbing buluh (DBB), is mainly used as an ethnomedicine in the treatment of metabolic disorders including diabetes mellitus, hypertension and obesity. The present study aims to investigate the browning activity on white adipocytes by A. bilimbi leaf extract and to evaluate the potential mechanisms.

    METHODS: Ethanolic leaf extract of A. bilimbi was exposed to Myf5 lineage precursor cells to stimulate adipocyte differentiation. Protein expressions of brown adipocyte markers were determined through high content screening analysis and validated through western blotting. Mito Stress Test assay was conducted to evaluate the cellular oxygen consumption rate upon A. bilimbi treatment.

    RESULTS: A. bilimbi ethanolic leaf extract exhibited an adipogenesis effect similar to a PPARgamma agonist. It also demonstrated brown adipocyte differentiation in myoblastic Myf5-positive precursor cells. Expression of UCP1 and PRDM16 were induced. The basal metabolic rate and respiratory capacity of mitochondria were increased upon A. bilimbi treatment.

    CONCLUSIONS: The findings suggest that Averrhoa bilimbi ethanolic leaf extract induces adipocyte browning through PRDM16 activation and enhances mitochondria activity due to UCP1 up-regulation.

    Matched MeSH terms: Adipose Tissue, Brown/cytology; Adipose Tissue, Brown/drug effects*; Adipose Tissue, Brown/metabolism
  11. Ismail S, Manaf RA, Mahmud A
    East Mediterr Health J, 2019 Jun 04;25(4):239-245.
    PMID: 31210344 DOI: 10.26719/emhj.19.011
    Background: Research on the health benefits of fasting is growing; this includes time-restricted feeding and Islamic fasting.

    Aims: This article aims to review and highlight the similarities and differences between time-restricted feeding and Islamic fasting during Ramadan.

    Methods: A scoping review was undertaken to identify relevant articles that answered the research question: what are the similarities and differences in characteristics of time-restricted feeding and Islamic fasting? MEDLINE/PubMed was searched using the terms: time-restricted feeding, and weight. Inclusion criteria were: original research and review articles; written in English; and published between the years 2000 and 2017.

    Results: A total of 25 articles that answered the research question were included in the review: 15 original research papers and 10 reviews. The findings suggest that Ramadan fasting is a form of time-restricted feeding in the contemporary context because of the period when eating is not allowed. The fasting duration reported in time-restricted feeding ranged from 4 to 24 hours, which is longer than that of Islamic fasting which is between 8 and 20 hours. Both time-restricted feeding and Islamic fasting have been found to have positive health effects, including weight reduction.

    Conclusion: Time-restricted feeding and Islamic fasting have many similar characteristics and reported positive health effects.

    Matched MeSH terms: Adipose Tissue/physiopathology
  12. Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur-Farhana MF, Ima-Nirwana S, et al.
    Aging Male, 2019 Jun;22(2):129-140.
    PMID: 29925283 DOI: 10.1080/13685538.2018.1482487
    Testosterone is the predominant gonadal androgen in men. Low testosterone levels are found to be associated with an increased in metabolic risk and systematic inflammation. Since adipose tissue is a source of inflammatory cytokines, testosterone may regulate inflammation by acting on adipose tissue. This review aimed to explore the role of testosterone in inflammation and its mechanism of action. Both animal studies and human studies showed that (1) testosterone deficiency was associated with an increase in pro-inflammatory cytokines; (2) testosterone substitution reduced pro-inflammatory cytokines. The suppression of inflammation by testosterone were observed in patients with coronary artery disease, prostate cancer and diabetes mellitus through the increase in anti-inflammatory cytokines (IL-10) and the decrease in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). Despite these, some studies also reported a non-significant relationship. In conclusion, testosterone may possess anti-inflammatory properties but its magnitude is debatable. More evidence is needed to validate the use of testosterone as a marker and in the management of chronic inflammatory diseases.
    Matched MeSH terms: Adipose Tissue/metabolism
  13. Wilson N, Steadman R, Muller I, Draman M, Rees DA, Taylor P, et al.
    Int J Mol Sci, 2019 May 31;20(11).
    PMID: 31151314 DOI: 10.3390/ijms20112675
    Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = -0.396 (p = 0.002), r = -0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.
    Matched MeSH terms: Adipose Tissue/cytology; Adipose Tissue/metabolism
  14. Abd Rahman NH, Yamada Y, Amin Nordin MS
    Materials (Basel), 2019 May 19;12(10).
    PMID: 31109128 DOI: 10.3390/ma12101636
    Previous works have shown that wearable antennas can operate ideally in free space; however, degradation in performance, specifically in terms of frequency shifts and efficiency was observed when an antenna structure was in close proximity to the human body. These issues have been highlighted many times yet, systematic and numerical analysis on how the dielectric characteristics may affect the technical behavior of the antenna has not been discussed in detail. In this paper, a wearable antenna, developed from a new electro-textile material has been designed, and the step-by-step manufacturing process is presented. Through analysis of the frequency detuning effect, the on-body behavior of the antenna is evaluated by focusing on quantifying the changes of its input impedance and near-field distribution caused by the presence of lossy dielectric material. When the antenna is attached to the top of the body fat phantom, there is an increase of 17% in impedance, followed by 19% for the muscle phantom and 20% for the blood phantom. These phenomena correlate with the electric field intensities (V/m) observed closely at the antenna through various layers of mediums (z-axis) and along antenna edges (y-axis), which have shown significant increments of 29.7% in fat, 35.3% in muscle and 36.1% in blood as compared to free space. This scenario has consequently shown that a significant amount of energy is absorbed in the phantoms instead of radiated to the air which has caused a substantial drop in efficiency and gain. Performance verification is also demonstrated by using a fabricated human muscle phantom, with a dielectric constant of 48, loss tangent of 0.29 and conductivity of 1.22 S/m.
    Matched MeSH terms: Adipose Tissue
  15. Fayez A Almabhouh, Faizatul Isyraqiah Ahmad Muhammad, Hisham Ibrahim, Harbindarjeet Singh
    MyJurnal
    Leptin, a 16 kDa protein and a product of the ob/ob gene, has a tertiary structure similar to that
    of a cytokine. It is primarily secreted by white adipose tissue and its levels in the blood correlate
    positively with percentage body fat. Leptin was first identified in 1994 as a major factor that
    regulated food intake and energy balance. Leptin in the circulation exists either as a free
    monomeric hormone or bound to its soluble receptor. Its serum levels usually range from 0.5 to
    37.7 ng/ml in males and 2.0 to 45.2 ng/ml in females. The half-life of leptin is between 20 - 30
    minutes and it is eliminated mainly by the kidneys. However, research over the last 25 years
    has revealed numerous other physiological roles for leptin, including roles in inflammation,
    immune function, neuro-endocrine function, bone metabolism, blood pressure regulation and
    sexual maturation. Most of these roles have been identified from studies on leptin deficient
    rodents. Apart from energy balance and sexual maturation, where its role is direct and obvious,
    its actions on the rest of the other systems are permissive. Actions of leptin are both centrally
    and peripherally mediated involving receptors that are widely distributed in the body. Six leptin
    receptor isoforms, belonging to the class 1 cytokine receptor family, have been identified.
    These receptors are products of the OBR gene. The cellular actions of leptin are mediated
    through any one of five different signalling pathways that include the JAK-STAT, PI3K, MAPK,
    AMPK, and the mTOR signalling pathways.
    Matched MeSH terms: Adipose Tissue, White
  16. Zawawi N, Ismail M
    Malays J Med Sci, 2018 Nov;25(6):46-58.
    PMID: 30914878 MyJurnal DOI: 10.21315/mjms2018.25.6.5
    Background: Strobilanthes crispus (S. crispus) leaves were traditionally consumed for its body weight lowering effect. In this study, we investigated the anti-obesity effect of S. crispus leaves extract (SCE).

    Methods: Mice (n = 48) were fed high-fat diet (HFD) for 25 weeks to induce obesity, after which half were maintained on HFD and half switched to low-fat diet (LFD)while they were given normal water (H2O) or 0.1% (w/v) SCE in water at week 0-4 which was increased to 1% (w/v) at week 5-9. Effects of treatment with SCE were compared between HFDH2O, HFDSCE, LFDH2O and LFDSCE groups. Respiratory exchange ratios (RER) were measured at weeks 0, 5 and 10. Food, water intake and body weight were measured weekly. Plasma lipid profile and organ weights were determined at week 10.

    Results: SCE had significantly reduced RER at week 9 (P = 0.011). Food intake, body weight, and abdominal adipose tissue weight were not altered by SCE at weeks 5 and 10. However, significant increase in plasma and liver cholesterol (P < 0.050) was observed.

    Conclusion: Our findings suggest that SCE induced lipolysis and body fat oxidation and increased energy expenditure. Further studies in other animal models should be done to confirm the consistency of these results.

    Matched MeSH terms: Adipose Tissue
  17. Cheng CK, Bakar HA, Gollasch M, Huang Y
    Cardiovasc Drugs Ther, 2018 10;32(5):481-502.
    PMID: 30171461 DOI: 10.1007/s10557-018-6820-z
    Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
    Matched MeSH terms: Adipose Tissue/innervation; Adipose Tissue/metabolism*; Adipose Tissue/physiopathology
  18. Asan NB, Hassan E, Shah JVSRM, Noreland D, Blokhuis TJ, Wadbro E, et al.
    Sensors (Basel), 2018 Aug 21;18(9).
    PMID: 30134629 DOI: 10.3390/s18092752
    In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7⁻2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of ∼0.7 dB and ∼1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.
    Matched MeSH terms: Adipose Tissue*
  19. Kiran Kumar Krishanappa S, Eachempati P, Kumbargere Nagraj S, Shetty NY, Moe S, Aggarwal H, et al.
    Cochrane Database Syst Rev, 2018 08 16;8:CD011784.
    PMID: 30113083 DOI: 10.1002/14651858.CD011784.pub3
    BACKGROUND: An oro-antral communication is an unnatural opening between the oral cavity and maxillary sinus. When it fails to close spontaneously, it remains patent and is epithelialized to develop into an oro-antral fistula. Various surgical and non-surgical techniques have been used for treating the condition. Surgical procedures include flaps, grafts and other techniques like re-implantation of third molars. Non-surgical techniques include allogenic materials and xenografts. This is an update of a review first published in May 2016.

    OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 23 May 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 4), MEDLINE Ovid (1946 to 23 May 2018), and Embase Ovid (1980 to 23 May 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).

    SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.

    DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.

    MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.

    AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.

    Matched MeSH terms: Adipose Tissue/transplantation*
  20. Bahrampour Juybari K, Kamarul T, Najafi M, Jafari D, Sharifi AM
    Cell Tissue Res, 2018 08;373(2):407-419.
    PMID: 29582166 DOI: 10.1007/s00441-018-2825-y
    Strategies based on mesenchymal stem cell (MSC) therapy for restoring injured articular cartilage are not effective enough in osteoarthritis (OA). Due to the enhanced inflammation and oxidative stress in OA microenvironment, differentiation of MSCs into chondrocytes would be impaired. This study aims to explore the effects of diallyl disulfide (DADS) on IL-1β-mediated inflammation and oxidative stress in human adipose derived mesenchymal stem cells (hADSCs) during chondrogenesis. MTT assay was employed to examine the effects of various concentrations of DADS on the viability of hADSCs at different time scales to obtain non-cytotoxic concentration range of DADS. The effects of DADS on IL-1β-induced intracellular ROS generation and lipid peroxidation were evaluated in hADSCs. Western blotting was used to analyze the protein expression levels of IκBα (np), IκBα (p), NF-κB (np) and NF-κB (p). Furthermore, the gene expression levels of antioxidant enzymes in hADSCs and chondrogenic markers at days 7, 14 and 21 of differentiation were measured using qRT-PCR. The results showed that addition of DADS significantly enhanced the mRNA expression levels of antioxidant enzymes as well as reduced ROS elevation, lipid peroxidation, IκBα activation and NF-κB nuclear translocation in hADSCs treated with IL-1β. In addition, DADS could significantly increase the expression levels of IL-1β-induced impaired chondrogenic marker genes in differentiated hADSCs. Treatment with DADS may provide an effective approach to prevent the pro-inflammatory cytokines and oxidative stress as catabolic causes of chondrocyte cell death and enhance the protective anabolic effects by promoting chondrogenesis associated gene expressions in hADSCs exposed to OA condition.
    Matched MeSH terms: Adipose Tissue/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links