Displaying publications 41 - 60 of 327 in total

Abstract:
Sort:
  1. Himmelreich N, Bertoldi M, Alfadhel M, Alghamdi MA, Anikster Y, Bao X, et al.
    Mol Genet Metab, 2023 Jul;139(3):107624.
    PMID: 37348148 DOI: 10.1016/j.ymgme.2023.107624
    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.
    Matched MeSH terms: Amino Acids/genetics
  2. Dashti M, Nizam R, Jacob S, Al-Kandari H, Al Ozairi E, Thanaraj TA, et al.
    Front Immunol, 2023;14:1238269.
    PMID: 37638053 DOI: 10.3389/fimmu.2023.1238269
    Type 1 diabetes (T1D) is a complex autoimmune disorder that is highly prevalent globally. The interactions between genetic and environmental factors may trigger T1D in susceptible individuals. HLA genes play a significant role in T1D pathogenesis, and specific haplotypes are associated with an increased risk of developing the disease. Identifying risk haplotypes can greatly improve the genetic scoring for early diagnosis of T1D in difficult to rank subgroups. This study employed next-generation sequencing to evaluate the association between HLA class II alleles, haplotypes, and amino acids and T1D, by recruiting 95 children with T1D and 150 controls in the Kuwaiti population. Significant associations were identified for alleles at the HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci, including DRB1*03:01:01, DQA1*05:01:01, and DQB1*02:01:01, which conferred high risk, and DRB1*11:04:01, DQA1*05:05:01, and DQB1*03:01:01, which were protective. The DRB1*03:01:01~DQA1*05:01:01~DQB1*02:01:01 haplotype was most strongly associated with the risk of developing T1D, while DRB1*11:04-DQA1*05:05-DQB1*03:01 was the only haplotype that rendered protection against T1D. We also identified 66 amino acid positions across the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes that were significantly associated with T1D, including novel associations. These results validate and extend our knowledge on the associations between HLA genes and T1D in Kuwaiti children. The identified risk alleles, haplotypes, and amino acid variations may influence disease development through effects on HLA structure and function and may allow early intervention via population-based screening efforts.
    Matched MeSH terms: Amino Acids/genetics
  3. Song J, Luo C, Lim L, Cheong KL, Farhadi A, Tan K
    Crit Rev Food Sci Nutr, 2025;65(10):1950-1961.
    PMID: 38329037 DOI: 10.1080/10408398.2024.2315446
    Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.
    Matched MeSH terms: Amino Acids, Essential/analysis
  4. Salleh SF, Kamaruddin A, Uzir MH, Karim KA, Mohamed AR
    Arch Microbiol, 2016 Mar;198(2):101-13.
    PMID: 26521065 DOI: 10.1007/s00203-015-1164-6
    This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.
    Matched MeSH terms: Amino Acids, Diamino
  5. Hamad Ali Hamad, Cheah, Yoke Kqueen, Nur Fariesha MD Hashim
    MyJurnal
    High invasive cancer cells are thought to recruit specialised actin-rich protrusions for invasion in metastasis process. These protrusions are termed invadopodia. To study invadopodia formation, one of the first challenges faced by researchers has been to optimise the cell line passage number in order to be used for the invadopodia assay. Therefore, this study aims to investigate the effects of the passage number on invadopodia formation in MDA-MB-231 breast cancer cell line. Invadopodia assay was used to achieve the aim of the study. The results provided evidence that invadopodia formation is affected by the high passage number. The cells were also tested with dimethyloxalylglycine (DMOG) a hypoxic mimicking agent which is known to be an invadopodia inducer, the results showed that the cells in low passage number (P7) treated with DMOG increase the cells forming invadopodia, while the cells with high passage number (P35) showed that DMOG fails to stimulate the cells to form invadopodia. Furthermore, the cells with high passage number after passage 15 are starting to lose the ability to degrade the gelatin. In conclusion, this study suggests that only cells with a low passage number, less than passage 15 should be used in the study of invadopodia formation to obtain the results in the search for molecular targets and signaling at invadopodia.
    Matched MeSH terms: Amino Acids, Dicarboxylic
  6. Irwandi, J., Faridayanti, S., Mohamed, E.S.M., Hamzah, M.S., Torla, H.H., Che Man, Y.B.
    MyJurnal
    Gelatins from the skin of four local marine fish, namely “kerapu” (Epinephelus sexfasciatus), “jenahak” (Lutjianus argentimaculatus), “kembung” (Rastrelliger kanagurta), and “kerisi” (Pristipomodes typus) have been successfully extracted by acid extraction. Results characterization showed that the fish gelatins were comparable to the fish gelatins from other fish species previously reported. They appeared snowy white in color with crystal-like and light texture. The gelatine extracted from “kerapu” had the strongest fishy odor, followed by the gelatines derived from “jenahak”, “kembung” and “kerisi”. In terms of bloom strength, the gelatin extracted from “kerapu” was found to be the strongest one compared to others, with the bloom value of more than 2000 g. The gelatins developed in this study contained almost all essential amino acids, with glycine being the most predominant one.
    Matched MeSH terms: Amino Acids, Essential
  7. Monajemia, H., Daud, M.N., Zain, S.M., Wan Abdullah, W.A.T.
    ASM Science Journal, 2012;6(2):138-143.
    MyJurnal
    Finding a proper transition structure for the peptide bond formation process can lead to a better understanding of the role of the ribosome in catalyzing this reaction. A potential energy surface scan was performed on the ester bond dissociation of the P-site aminoacyl-tRNA and the peptide bond formation of P-site and A-site amino acids. The full fragment of initiator tRNAi met attached to both cognate (met) and non-cognate (ala) amino acids as the P-site substrate and the methionine as the A-site amino acid was used in this study. Due to the large size of tRNA, ONIOM calculations were used to reduce the computational cost. This study illustrated that the rate of peptide bond formation was reduced for misacylated tRNA without the presence of ribosomal bases. This demonstrated that there were indeed specific structural interactions involving the amino acid side chain within the tRNAi met.
    Matched MeSH terms: Amino Acids
  8. Nurul, A.I., Azura, A.
    MyJurnal
    Knowledge about the thermal and storage behavior of produced protein is important for the purpose of storage, transport and shelve life during industrial application. Recombinant bromelain thermal and storage stability were measured and compared to the commercial bromelain using Differential Scanning Calorimetry (DSC). Recombinant bromelain is more stable than commercial bromelain at higher temperature but the stability was reduced after 7 days of storage at 4oC. Higher energy is needed to break the bond between amino acid chains in recombinant bromelain as shown by the enthalpy obtained, suggesting that recombinant bromelain has good protein structure and conformation compared to commercial.
    Matched MeSH terms: Amino Acids
  9. Jindal MH, Le CF, Mohd Yusof MY, Sekaran SD
    JUMMEC, 2014;17(1):1-7.
    MyJurnal
    Antimicrobial peptides (AMPs) have gained increasing attention as a potential candidate in the development of novel antimicrobial agent. Designing AMPs with enhanced antimicrobial activity while reducing the cell toxicity level is desired especially against the antibiotic-resistant microbes. Various approaches towards the design of AMPs have been described and physicochemical properties of AMPs represent the primary factors determining the antimicrobial potency of AMPs. The most common parameters include net charge and hydrophobicity, which greatly influence the antimicrobial activity of AMPs. Moreover, certain amino acids would have critical importance in affecting the antimicrobial activity as well as cell cytotoxicity of AMPS. In this review, net charge, hydrophobicity, and specific amino acid residues were discussed as factors contributing to the antimicrobial activity of AMPs.
    Matched MeSH terms: Amino Acids
  10. Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, et al.
    J Agric Food Chem, 2021 Oct 27;69(42):12385-12401.
    PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632
    Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
    Matched MeSH terms: Amino Acids, Aromatic
  11. Normah, I., Noorasma, M.
    MyJurnal
    Physicochemical properties of mud clam (Polymesoda erosa) hydrolysate produced using two microbial enzymes; alcalase and flavourzyme were determined. Hydrolysis using alcalase at 20.28% degree of hydrolysis (DH) resulted in 25.06 % yield and 45.37% protein while flavourzyme hydrolysis showed 22.93 % DH, 46.67 % protein and 30.68 % yield. Both hydrolysates were yellowish. Better emulsifying properties, foaming properties and water and oil holding capacity were exhibited by flavourzyme hydrolysate compared to the alcalase hydrolysate. However, in terms of amino acid composition, alcalase hydrolysate contained higher amino acid composition (75.06%) than flavourzyme hydrolysate (62.37%). The study suggested that mud clam hydrolysate had the potential to be used in food formulations for human consumption.
    Matched MeSH terms: Amino Acids
  12. Abd Rahim FN, Wan Ibadullah WZ, Saari N, Brishti FH, Mustapha NA, Ahmad N, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 3):124908.
    PMID: 37217045 DOI: 10.1016/j.ijbiomac.2023.124908
    Rice bran protein concentrates (RBPC) were extracted using mild alkaline solvents (pH: 8, 9, 10). The physicochemical, thermal, functional, and structural aspects of freeze-drying (FD) and spray-drying (SD) were compared. FD and SD of RBPC had porous and grooved surfaces, with FD having non-collapsed plates and SD being spherical. Alkaline extraction increases FD's protein concentration and browning, whereas SD inhibits browning. According to amino acid profiling, RBPC-FD9's extraction optimizes and preserves amino acids. A tremendous particle size difference was prominent in FD, thermally stable at a minimal maximum of 92 °C. Increased pH extraction gives FD greater exposal surface hydrophobicity and positively relates to denaturation enthalpy. Mild pH extraction and drying significantly impacted solubility, improved emulsion properties, and foaming properties of RBPC as observed in acidic, neutral, and alkaline environments. RBPC-FD9 and RBPC-SD10 extracts exhibit outstanding foaming and emulsion activity in all pH conditions, respectively. Appropriate drying selection, RBPC-FD or SD potentially employed as foaming/emulsifier agent or meat analog.
    Matched MeSH terms: Amino Acids
  13. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
    Matched MeSH terms: Amino Acids
  14. Larue L, Kenzhebayeva B, Al-Thiabat MG, Jouan-Hureaux V, Mohd-Gazzali A, Wahab HA, et al.
    Bioorg Chem, 2023 Jan;130:106200.
    PMID: 36332316 DOI: 10.1016/j.bioorg.2022.106200
    Targeting vascular endothelial growth factor receptor (VEFGR) and its co-receptor neuropilin-1 (NRP-1) is an interesting vascular strategy. tLyp-1 is a tumor-homing and penetrating peptide of 7 amino acids (CGNKRTR). It is a truncated form of Lyp-1 (CGNKRTRGC), which is known to target NRP-1 receptor, with high affinity and specificity. It is mediated by endocytosis via C-end rule (CendR) internalization pathway. The aim of this study is to evaluate the importance of each amino acid in the tLyp-1 sequence through alanine-scanning (Ala-scan) technique, during which each of the amino acid in the sequence was systematically replaced by alanine to produce 7 different analogues. In silico approach through molecular docking and molecular dynamics are employed to understand the interaction between the peptide and its analogues with the NRP-1 receptor, followed by in vitro ligand binding assay study. The C-terminal Arg is crucial in the interaction of tLyp-1 with NRP-1 receptor. Substituting this residue dramatically reduces the affinity of this peptide which is clearly seen in this study. Lys-4 is also important in the interaction, which is confirmed via the in vitro study and the MM-PBSA analysis. The finding in this study supports the CendR, in which the presence of R/K-XX-R/K motif is essential in the binding of a ligand with NRP-1 receptor. This presented work will serve as a guide in the future work pertaining the development of active targeting agent towards NRP-1 receptor.
    Matched MeSH terms: Amino Acids
  15. Lim JY, Ali NM, Rajikan R, Amit N, Hamid HA, Leong HY, et al.
    Int J Med Inform, 2023 Sep;177:105120.
    PMID: 37295139 DOI: 10.1016/j.ijmedinf.2023.105120
    BACKGROUND: A dietary application can assist the caregivers of AAMDs children in auto-calculating the protein intake, hence improving dietary compliance. However, existing dietary application for patients with AAMDs only focus on delivering the nutritional content of food and monitoring the dietary intake but were lacking in other educational components.

    OBJECTIVE: To assess the uses, needs and preferences towards a dietary application among the caregivers of AAMDs patients.

    METHODS: We conducted a mixed-method study comprising focus group discussion (FGD) and a quantitative questionnaire survey among caregivers of patients aged between 6-month-old to 18-year-old with AAMDs who are receiving active treatment, both medical and dietetic treatment in the genetic clinic, Hospital Kuala Lumpur (HKL).

    RESULTS: A total of 76 and 20 caregivers participated in the survey and FGD respectively. All the caregivers (100%) possessed a smartphone and most of the caregivers (89.5%) had the experience of using smartphone or other technological devices to search for health or medical information. However, majority of the participants were not aware of the existence of any web-based or mobile application related to AAMDs (89.5%). While for the qualitative part, three themes emerged: (1) experience with current source of information; (2) needs for supporting self-management educational contents and needs for technological design application. Most of the caregivers used the nutritional booklet as sources of reference but some of them searched for web-based information. Features perceived by the caregivers included a digital food composition database, sharing diet recall with healthcare providers, self-monitoring diet intake as well as low protein recipes. Besides that, user-friendly and ease to use were also perceived as the important features by the caregivers.

    CONCLUSION: The identified features and needs by the caregivers should be integrated into the design of the apps to promote acceptance and usage.

    Matched MeSH terms: Amino Acids
  16. Azilawati MI, Hashim DM, Jamilah B, Amin I
    J Chromatogr A, 2014 Aug 1;1353:49-56.
    PMID: 24797394 DOI: 10.1016/j.chroma.2014.04.050
    In-house method validation was conducted to determine amino acid composition in gelatin by a pre-column derivatization procedure with the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation for 18 amino acids in less than 40 min; the overall detection and quantitation limit for amino acids fell into ranges of 5.68-12.48 and 36.0-39.0 pmol/μl, respectively; the matrix effect was not observed, and the linearity range was 37.5-1000 pmol/μl. The accuracy (precision and recovery) analyses of the method were conducted under repeatable conditions on different days in random order. Method precision revealed by HorRat values was significantly less than 2, except for histidine with a precision of 2.19, and the method recoveries had a range of 80-115% except for alanine which was recovered at 79.4%. The findings were reproducible and accurately defined, and the method was found to be suited to routine analysis of amino acid composition in gelatin-based ingredients.
    Matched MeSH terms: Amino Acids/analysis*; Amino Acids/chemistry
  17. Darah I, Nur-Diyana A, Nurul-Husna S, Jain K, Lim SH
    Appl Biochem Biotechnol, 2013 Dec;171(7):1900-10.
    PMID: 24013862 DOI: 10.1007/s12010-013-0496-4
    Keratinous wastes have increasingly become a problem and accumulate in the environment mainly in the form of feathers, generated mainly from a large number of poultry industries. As keratins are very difficult to degrade by general proteases, they pose a major environmental problem. Therefore, microorganisms which would effectively degrade keratins are needed for recycling such wastes. A geophilic dermatophyte, Microsporum fulvum IBRL SD3 which was isolated from a soil sample collected from a chicken feather dumping site using a baiting technique, was capable to produce keratinase significantly. The crude keratinase was able to degrade whole chicken feathers effectively. The end product of the degradation was protein that contained essential amino acids and may have potential application in animal feed production. Thus, M. fulvum could be a novel organism to produce keratinase for chicken feathers degradation.
    Matched MeSH terms: Amino Acids/biosynthesis; Amino Acids/metabolism
  18. Muhammad N, Man Z, Bustam MA, Mutalib MI, Wilfred CD, Rafiq S
    Appl Biochem Biotechnol, 2011 Oct;165(3-4):998-1009.
    PMID: 21720837 DOI: 10.1007/s12010-011-9315-y
    In the present work, the dissolution of bamboo biomass was tested using a number of ionic liquids synthesized in laboratory. It was observed that one of the synthesized amino acid-based ionic liquids, namely 1-ethyl-3-methylimidazolium glycinate, was capable of dissolving the biomass completely. The dissolved biomass was then regenerated using a reconstitute solvent (acetone/water) and was characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The results were compared to preconditioned bamboo biomass. The regenerated biomass was found to have a more homogenous macrostructure, which indicates that the crystalline form and structure of its cellulose has changed from type Ι to type ΙΙ during the dissolution and regeneration process.
    Matched MeSH terms: Amino Acids/metabolism*; Amino Acids/chemistry
  19. Karami A, Karbalaei S, Zad Bagher F, Ismail A, Simpson SL, Courtenay SC
    Environ Pollut, 2016 Aug;215:170-177.
    PMID: 27182978 DOI: 10.1016/j.envpol.2016.05.014
    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
    Matched MeSH terms: Amino Acids/analysis; Amino Acids/metabolism*
  20. Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, et al.
    J Sci Food Agric, 2016 Mar 30;96(5):1648-58.
    PMID: 26009985 DOI: 10.1002/jsfa.7267
    BACKGROUND: Mung bean and soybean have been individually reported previously to have antioxidant, cytotoxic and immunomodulatory effects, while fermentation is a well-known process to enhance the bioactive compounds that contribute to higher antioxidant, cytotoxic and immunomodulation effects. In this study, the free amino acids profile, soluble phenolic acids content, antioxidants, cytotoxic and immunomodulatory effects of fermented and non-fermented mung bean and soybean were compared.

    RESULTS: Fermented mung bean was recorded to have the highest level of free amino acids, soluble phenolic acids (especially protocatechuic acid) and antioxidant activities among all the tested products. Both fermented mung bean and soybean possessed cytotoxicity activities against breast cancer MCF-7 cells by arresting the G0/G1 phase followed by apoptosis. Moreover, fermented mung bean and soybean also induced splenocyte proliferation and enhanced the levels of serum interleukin-2 and interferon-γ.

    CONCLUSION: Augmented amounts of free amino acids and phenolic acids content after fermentation enhanced the antioxidants, cytotoxicity and immunomodulation effects of mung bean and soybean. More specifically, fermented mung bean showed the best effects among all the tested products. This study revealed the potential of fermented mung bean and soybean as functional foods for maintenance of good health.

    Matched MeSH terms: Amino Acids/metabolism; Amino Acids/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links