Displaying publications 41 - 60 of 160 in total

Abstract:
Sort:
  1. Gharibrezal M, Ashraf MA
    J Environ Biol, 2016 09;37(5 Spec No):1097-1104.
    PMID: 29989741
    Bera Lake is the largest natural fresh water reservoir in Malaysia. It has vital environmental and ecological importance for human and wild life. Nevertheless, water quality of this lake has been degraded during the last few decades due to land development projects at catchment area. Therefore, a comprehensive water quality assessment of Bera Lake was implemented in order to compare current water quality with the implementation of land development projects. In situ water quality surveying was implemented using calibrated full option Hydrolab DS 5. Eleven parameters viz., temperature, depth of sampling, salinity, Turbidity, total dried solid, pH, NH4(+), N03(-), Cl(-), saturation percentage of dissolved oxygen, specific conductivity were recorded in fifty one stations at 0.2h, 0.5h, and 0.8h depth. National Water Quality Standards for Malaysia (NWQS) and Water Quality were used to evaluate Bera Lake quality based on previous and resultant data. Vertical water quality analysis revealed a clear stratification in Bera Lake water profile in terms of temperature, dissolved oxygen, chloride (Cl(-)), nitrate (NO(3)), pH and specific conductivity (EC) parameters. Results clearly demonstrate the important role of land use changes since 1972 in the physico-chemical condition of water quality at Bera Lake. Classifications of water quality before and after land development project were calculated as class II and class V, respectively. A long-term and comprehensive monitoring of water quality assessment is recommended in order to reach plan of sustainable water resources use with conservation approach.
    Matched MeSH terms: Ammonia
  2. Ghosh AK, Rahaman AA, Singh R
    Int J Sport Nutr Exerc Metab, 2010 Jun;20(3):216-23.
    PMID: 20601739
    The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 +/- 1.1 yr, 63.3 +/- 2.4 kg, and 39.9 +/- 1.1 ml . kg(-1) . min(-1), respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 +/- 1.28, 5.49 +/- 1.20, and 7.53 +/- 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44-140%; p < .001) and by 37% (15-63%; p < .05) relative to placebo and sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.
    Matched MeSH terms: Ammonia/blood
  3. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Ammonia
  4. Goh KM, Dickinson M, Supramaniam CV
    Physiol Plant, 2018 Mar;162(3):274-289.
    PMID: 28940509 DOI: 10.1111/ppl.12645
    Lignification of the plant cell wall could serve as the first line of defense against pathogen attack, but the molecular mechanisms of virulence and disease between oil palm and Ganoderma boninense are poorly understood. This study presents the biochemical, histochemical, enzymology and gene expression evidences of enhanced lignin biosynthesis in young oil palm as a response to G. boninense (GBLS strain). Comparative studies with control (T1), wounded (T2) and infected (T3) oil palm plantlets showed significant accumulation of total lignin content and monolignol derivatives (syringaldehyde and vanillin). These derivatives were deposited on the epidermal cell wall of infected plants. Moreover, substantial differences were detected in the activities of enzyme and relative expressions of genes encoding phenylalanine ammonia lyase (EC 4.3.1.24), cinnamate 4-hydroxylase (EC 1.14.13.11), caffeic acid O-methyltransferase (EC 2.1.1.68) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195). These enzymes are key intermediates dedicated to the biosynthesis of lignin monomers, the guaicyl (G), syringyl (S) and ρ-hydroxyphenyl (H) subunits. Results confirmed an early, biphasic and transient positive induction of all gene intermediates, except for CAD enzyme activities. These differences were visualized by anatomical and metabolic changes in the profile of lignin in the oil palm plantlets such as low G lignin, indicating a potential mechanism for enhanced susceptibility toward G. boninense infection.
    Matched MeSH terms: Phenylalanine Ammonia-Lyase/genetics; Phenylalanine Ammonia-Lyase/metabolism
  5. Govender NT, Mahmood M, Seman IA, Wong MY
    Front Plant Sci, 2017;8:1395.
    PMID: 28861093 DOI: 10.3389/fpls.2017.01395
    Basal stem rot, caused by the basidiomycete fungus, Ganoderma boninense, is an economically devastating disease in Malaysia. Our study investigated the changes in lignin content and composition along with activity and expression of the phenylpropanoid pathway enzymes and genes in oil palm root tissues during G. boninense infection. We sampled control (non-inoculated) and infected (inoculated) seedlings at seven time points [1, 2, 3, 4, 8, and 12 weeks post-inoculation (wpi)] in a randomized design. The expression profiles of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) genes were monitored at 1, 2, and 3 wpi using real-time quantitative polymerase chain reaction. Seedlings at 4, 8, and 12 wpi were screened for lignin content, lignin composition, enzyme activities (PAL, CAD, and POD), growth (weight and height), and disease severity (DS). Gene expression analysis demonstrated up-regulation of PAL, CAD, and POD genes in the infected seedlings, relative to the control seedlings at 1, 2, and 3 wpi. At 2 and 3 wpi, CAD showed highest transcript levels compared to PAL and POD. DS increased progressively throughout sampling, with 5, 34, and 69% at 4, 8, and 12 wpi, respectively. Fresh weight and height of the infected seedlings were significantly lower compared to the control seedlings at 8 and 12 wpi. Lignin content of the infected seedlings at 4 wpi was significantly higher than the control seedlings, remained elicited with no change at 8 wpi, and then collapsed with a significant reduction at 12 wpi. The nitrobenzene oxidation products of oil palm root lignin yielded both syringyl and guaiacyl monomers. Accumulation of lignin in the infected seedlings was in parallel to increased syringyl monomers, at 4 and 8 wpi. The activities of PAL and CAD enzymes in the infected seedlings at DS = 5-34% were significantly higher than the control seedlings and thereafter collapsed at DS = 69%.
    Matched MeSH terms: Phenylalanine Ammonia-Lyase
  6. Guan Ling Sim, Mohd Nizar Hamidon, Kamilu Iman Usman
    MyJurnal
    This study presents the sensitivity of graphene nanoribbon (GNR) when exposed to ammonia gas at room temperature. Alumina were used as a substrate and coated with GNR as sensing film for ammonia gas detection. Four different concentration of GNR in the category of maximum, high, low, and minimum were prepared. Each category of GNR will be dispersed on alumina substrate with area of 1cm2 and 4cm2. 30nm of gold contacts are sputtered on both ends of the sensing film. The ammonia gas can be detected by measuring the changes in resistance. The GNR as ammonia sensor shows good responses at room temperature. In repeatability test, maximum GNR shows least variation when exposed to ammonia with the value of 1.01% (4cm2) and 2.12% (1cm2). In a sensitivity test, 0.25% to 1.00% of ammonia gas was used and tested on maximum GNR. Maximum GNR on 4cm2 substrate shows higher sensitivity as compared to 1cm2. Reaction time of GNR on ammonia gas decreased as the concentration of ammonia increased. Larger surface area of sensing element required lesser reaction time.
    Matched MeSH terms: Ammonia
  7. Hadi Hamli, Mohd Hanafi Idris, Amy Halimah Rajaee, Abu Hena Mustafa Kamal, Mohammad Nesarul Hoque
    Sains Malaysiana, 2017;46:545-551.
    Condition Index (CI) was used to estimate the reproductive biology cycle of the hard clam Meretrix lyrata based on dry
    body weight and shell weight. High CI value was observed due to the increase in the body weight of the hard clam that
    corresponding to the maturity stage and early spawning. The CI value of M. lyrata from Buntal Village, Kuching, Sarawak
    showed three highest peaks during the 12-month study on May and October 2013 and March 2014. The lowest CI values
    were obtained in September and November 2013 and April 2014. Ammonia nitrogen was the only water parameter that
    significantly correlated to the CI values. The CI application is important to estimate the maturity of hard clam gonad
    to facilitate conservation activity through the hard clam harvesting out of the gonad maturation and spawning period.
    Matched MeSH terms: Ammonia
  8. Halim AA, Aziz HA, Johari MA, Ariffin KS, Adlan MN
    J Hazard Mater, 2010 Mar 15;175(1-3):960-4.
    PMID: 19945216 DOI: 10.1016/j.jhazmat.2009.10.103
    The performance of a carbon-mineral composite adsorbent used in a fixed bed column for the removal of ammoniacal nitrogen and aggregate organic pollutant (COD), which are commonly found in landfill leachate, was evaluated. The breakthrough capacities for ammoniacal nitrogen and COD adsorption were 4.46 and 3.23 mg/g, respectively. Additionally, the optimum empty bed contact time (EBCT) was 75 min. The column efficiency for ammoniacal nitrogen and COD adsorption using fresh adsorbent was 86.4% and 92.6%, respectively, and these values increased to 90.0% and 93.7%, respectively, after the regeneration process.
    Matched MeSH terms: Ammonia/chemistry*
  9. Hamid MAA, Aziz HA, Yusoff MS, Rezan SA
    Water Environ Res, 2021 Apr;93(4):596-607.
    PMID: 32991022 DOI: 10.1002/wer.1461
    The high-strength leachate produced from sanitary landfill is a serious issue around the world as it poses adverse effects on aquatic life and human health. Physio-chemical technology is one of the promising options as the leachate normally presents in stabilized form and not fully amendable by biological treatment. In this research, the effectiveness of natural zeolite (clinoptilolite) augmented electrocoagulation process (hybrid system) for removing high-strength ammonia (3,442 mg/L) and color (8,427 Pt-Co) from naturally saline (15 ppt) local landfill leachate was investigated. A batch mode laboratory-scale reactor with parallel-monopolar aluminum electrodes attached to a direct current (DC) electric power was used as an electrocoagulation reactor for performance enhancement purpose. Optimum operational conditions of 146 g/L zeolite dosage, 600 A/m2 current density, 60 min treatment time, 200 rpm stirring speed, 35 min settling duration, and pH 9 were recorded with up to 70% and 88% removals of ammonia and color, respectively. The estimated overall operational cost was 26.22 $/m3 . The biodegradability of the leachate had improved from 0.05 to 0.27 in all post-treatment processes. The findings revealed the ability of the hybrid process as a viable option in eliminating concentrated ammonia and color in natural saline landfill leachate. PRACTITIONER POINTS: Clinoptilolite was augmented on the electrocoagulation process in saline and stabilized landfill leachate (15 ppt). The high strength NH3 -N (3,442 mg/L) and color (8,427 Pt-Co) were 70% and 88% removed, respectively. The optimum conditions occurred at 140 g/L zeolite, 60 mA/cm2 current density, 60 min, and final pH of 8.20. The biodegradability of the leachate improved from 0.05 to 0.27 after the treatment. This hybrid treatment was simple, faster, and did not require auxiliary electrolyte.
    Matched MeSH terms: Ammonia
  10. Hamilton RG, Adkinson NF
    J Allergy Clin Immunol, 1996 Nov;98(5 Pt 1):872-83.
    PMID: 8939150
    BACKGROUND: Nonammoniated latex, ammoniated latex, and rubber glove extracts are the only sources of natural rubber (Hevea brasiliensis) latex that have potential for use as skin testing reagents in the diagnosis of latex allergy. Their diagnostic sensitivity and specificity as skin test reagents are unknown.

    OBJECTIVE: We conducted a phase 1/2 clinical study to examine the safety and diagnostic accuracy (sensitivity and specificity) of nonammoniated latex, ammoniated latex, and rubber glove extracts as skin test extracts to identify the most efficacious source material for future skin test reagent development.

    METHODS: Twenty-four adults not allergic to latex, 19 adults with hand dermatitis or pruritus, and 59 adults with a latex allergy were identified by clinical history. All provided blood and then received puncture skin tests and intradermal skin tests with nonammoniated latex, ammoniated latex, and rubber glove extracts from Malaysian H. brasiliensis latex by use of sequential titration. A glove provocation test and IgE anti-latex RAST were used to clarify positive history-negative skin test response and negative history-positive skin test response mismatches.

    RESULTS: All three extracts were biologically safe and sterile. After normalization to 1 mg/ml of total protein, all three extracts produced equivalent diagnostic sensitivity and specificity in puncture skin tests and intradermal skin tests at various extract concentrations. Optimal diagnostic accuracy was safely achieved at 100 micrograms/ml for intradermal skin tests (e.g., nonammoniated latex: puncture skin test sensitivity 96%, specificity 100%; intradermal skin test sensitivity 93%, specificity 96%). The presence of IgE antibody in skin was highly correlated with IgE anti-latex in serum (nonammoniated latex: r = 0.98, p < 0.001; ammoniated latex: r = 0.94, p < 0.001; rubber glove extract: r = 0.96, p < 0.001). All five available subjects with a positive history, negative skin test response, and absence of IgE antibody in serum had a negative glove provocation test response, indicating no clinical evidence of latex allergy. No systemic or large local allergic reactions were observed with puncture skin tests or intradermal skin tests.

    CONCLUSIONS: Equivalent diagnostic sensitivity and specificity were observed with the nonammoniated latex, ammoniated latex, and rubber glove extract skin test reagents after normalization for total protein; nonammoniated latex may be considered the reagent of choice on the basis of practical quality control and reproducibility considerations.

    Matched MeSH terms: Ammonia
  11. Hashim NAA, Ab-Rahim S, Suddin LS, Saman MSA, Mazlan M
    Molecular and clinical oncology, 2019 Jul;11(1):3-14.
    PMID: 31289671 DOI: 10.3892/mco.2019.1853
    Accurate diagnosis of colorectal cancer (CRC) relies on the use of invasive tools such as colonoscopy and sigmoidoscopy. Non-invasive tools are less sensitive in detecting the disease, particularly in the early stage. A number of researchers have used metabolomics analyses on serum/plasma samples of patients with CRC compared with normal healthy individuals in an effort to identify biomarkers for CRC. The aim of the present review is to compare reported serum metabolomics profiles of CRC and to identify common metabolites affected among these studies. A literature search was performed to include any experimental studies on global metabolomics profile of CRC using serum/plasma samples published up to March 2018. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used to assess the quality of the studies reviewed. In total, nine studies were included. The studies used various analytical platforms and were performed on different populations. A pathway enrichment analysis was performed using the data from all the studies under review. The most affected pathways identified were protein biosynthesis, urea cycle, ammonia recycling, alanine metabolism, glutathione metabolism and citric acid cycle. The metabolomics analysis revealed levels of metabolites of glycolysis, tricarboxylic acid cycle, anaerobic respiration, protein, lipid and glutathione metabolism were significantly different between cancer and control samples. Although the majority of differentiating metabolites identified were different in the different studies, there were several metabolites that were common. These metabolites include pyruvic acid, glucose, lactic acid, malic acid, fumaric acid, 3-hydroxybutyric acid, tryptophan, phenylalanine, tyrosine, creatinine and ornithine. The consistent dysregulation of these metabolites among the different studies suggest the possibility of common diagnostic biomarkers for CRC.
    Matched MeSH terms: Ammonia
  12. Hasnida Harun, Aznah Nor-Anuar, Zaini Ujang, Inawati Othman, Nor Hasyimah Rosman
    Sains Malaysiana, 2014;43:1485-1490.
    The present study investigated the efficiency of aerobic granular sludge (AGS) technology in treating effluent from soy sauce industry which is categorized as a high strength wastewater. The combination of anaerobic and aerobic granulation technology in SBR system was used in this study which was efficiently treated COD from the soy sauce wastewater where 87% of removal was achieved. Ammonia and colour was removed at a maximum of 87 and 76%, respectively, in the SBR system. Matured, dense and compact granules with 2.5 mm in diameters were developed with a good settling velocity (45 m/h) and 28 mL/gSS of sludge volume index (SVI). Hence, AGS technology was proven as an excellent treatment for soy sauce wastewater for being discharge into the environment, as the effluent was treated in one biological reactor with high hydraulic and organic loadings besides less production of sludge. In this study, the capabilities of AGS technology in treating relatively higher concentration of organic impurities present in the soy sauce wastewater were demonstrated.
    Matched MeSH terms: Ammonia
  13. Hata EM, Yusof MT, Zulperi D
    Plant Pathol J, 2021 Apr;37(2):173-181.
    PMID: 33866759 DOI: 10.5423/PPJ.OA.05.2020.0083
    The genus Streptomyces demonstrates enormous promise in promoting plant growth and protecting plants against various pathogens. Single and consortium treatments of two selected Streptomyces strains (Streptomyces shenzhenensis TKSC3 and Streptomyces sp. SS8) were evaluated for their growth-promoting potential on rice, and biocontrol efficiency through induced systemic resistance (ISR) mediation against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of rice bacterial leaf streak (BLS) disease. Seed bacterization by Streptomyces strains improved seed germination and vigor, relative to the untreated seed. Under greenhouse conditions, seed bacterization with consortium treatment TKSC3 + SS8 increased seed germination, root length, and dry weight by 20%, 23%, and 33%, respectively. Single and consortium Streptomyces treatments also successfully suppressed Xoc infection. The result was consistent with defense-related enzyme quantification wherein single and consortium Streptomyces treatments increased peroxidase (POX), polyphenol oxidase, phenylalanine ammonia-lyase, and β,1-3 glucanase (GLU) accumulation compared to untreated plant. Within all Streptomyces treatments, consortium treatment TKSC3 + SS8 showed the highest disease suppression efficiency (81.02%) and the lowest area under the disease progress curve value (95.79), making it the best to control BLS disease. Consortium treatment TKSC3 + SS8 induced the highest POX and GLU enzyme activities at 114.32 μmol/min/mg protein and 260.32 abs/min/mg protein, respectively, with both enzymes responsible for plant cell wall reinforcement and resistant interaction. Our results revealed that in addition to promoting plant growth, these Streptomyces strains also mediated ISR in rice plants, thereby, ensuring protection from BLS disease.
    Matched MeSH terms: Phenylalanine Ammonia-Lyase
  14. Hossain KA, Mohd-Jaafar MN, Appalanidu KB, Mustafa A, Ani FN
    Environ Technol, 2005 Mar;26(3):251-9.
    PMID: 15881021
    Selective Non-Catalytic Reduction (SNCR) of nitric oxide has been studied experimentally by injecting aqueous urea solution with and without additive in a pilot-scale diesel fired tunnel furnace at 3.4% excess oxygen level and with low ppm of baseline NO(x) ranging from 65 to 75 ppm within the investigated temperature range. The tests have been carried out using commercial grade urea as NO(x) reducing agent and commercial grade sodium carbonate as additive. The furnace simulated the small-scale combustion systems, where the operating temperatures are usually in the range of about 973 to 1323 K and NO(x) emission level remains below 100 ppm. With 5% plain urea solution, at Normalized Stoichiometric Ratio (NSR) of 4 as much as 54% reduction was achieved at 1128 K, whilst in the additive case the NO(x) reduction was improved to as much as 69% at 1093 K. Apart from this improvement, in the additive case, the effective temperature window as well as peak temperature of NO(x) reduction shifted towards lower temperatures. The result is quite significant, especially for this investigated level of baseline NO(x). The ammonia slip measurements showed that in both cases the slip was below 16 ppm at NSR of 4 and optimum temperature of NO(x) reduction. Finally, the investigations demonstrated that urea based SNCR is quite applicable to small-scale combustion applications and commercial grade sodium carbonate is a potential additive.
    Matched MeSH terms: Ammonia/analysis*
  15. How SW, Nittami T, Ngoh GC, Curtis TP, Chua ASM
    Chemosphere, 2020 Nov;259:127444.
    PMID: 32640378 DOI: 10.1016/j.chemosphere.2020.127444
    In this study, we assessed and optimized a low-dissolved-oxygen oxic-anoxic (low-DO OA) process to achieve a low-cost and sustainable solution for wastewater treatment systems in the developing tropical countries treating low chemical oxygen demand-to-nitrogen ratio (COD/N) wastewater. The low-DO OA process attained complete ammonia removal and the effluent nitrate nitrogen (NO3-N) was below 0.3 mg/L. The recommended hydraulic retention time and sludge retention time (SRT) were 16 h and 20 days, respectively. The 16S rRNA sequencing data revealed that long SRT (20 days) encouraged the growth of nitrite-oxidizing bacteria (NOB) affiliated with "Candidatus Nitrospira defluvii". Comammox made up 10-20% of the Nitrospira community. NOB and comammox related to Nitrospira were enriched at long SRT (20 days) to achieve good low-DO nitrification performance. The low-DO OA process was efficient and has simpler design than conventional processes, which are keys for sustainable wastewater treatment systems in the developing countries treating low COD/N wastewater.
    Matched MeSH terms: Ammonia
  16. Hussain S, Aziz HA, Isa MH, Adlan MN, Asaari FA
    Bioresour Technol, 2007 Mar;98(4):874-80.
    PMID: 16716587
    The purpose of the present study was to examine the removal of ammoniacal nitrogen (NH4-N) from synthetic wastewater using limestone (LS) and granular activated carbon (GAC) mixture as low cost adsorbent. In batch study, optimum shaking and settling times were 150 and 120 min, respectively. The LS-GAC mixture ratio of 25:15 removed about 58% NH4-N. The smaller particle size of medium yielded higher adsorption capacity. The equilibrium adsorption data followed the Freundlich isotherm (R2 > 0.98) but it showed weak bond. Adsorption kinetics were well described by the pseudo second-order rate model (R2 > 0.93). The upflow column showed that higher flow rate and initial concentration resulted in shorter column saturation time. The study showed that the usage of GAC could be reduced by combining GAC with LS for the removal of NH4-N from wastewater; thus reducing the cost of treatment.
    Matched MeSH terms: Ammonia/isolation & purification*
  17. IRVINE K, VERMETTE S, FIRUZA BEGHAM MUSTAFA
    Sains Malaysiana, 2013;42:1539-1548.
    Longitudinal water quality trends were assessed in the Tengi River system, Selangor, Malaysia, as the water moved from a peat swamp forest, through different agricultural land uses and finally through a town and then to the Straits of Malacca. Water draining from the peat swamp forest was dark in color due to its organic content and low in dissolved oxygen, pH, E. coli, calcium, nitrate and ammonia. The normal diurnal pattern for water temperature was observed for the peat swamp forest drainage, but there was no clear diurnal pattern evident in the dissolved oxygen data. The E. coli levels increased monotonically from the peat swamp forest waters (0 colonies/100 mL) through the agricultural areas (100-2000 colonies/100 mL) and town (7100 colonies/100 mL) and similarly pH increased along the same continuum. Dissolved oxygen increased from the peat swamp forest through the agricultural areas, but was lower in the town-impacted reach of the Tengi River.
    Matched MeSH terms: Ammonia
  18. Ibrahim MH, Jaafar HZ
    Int J Mol Sci, 2012;13(5):5290-306.
    PMID: 22754297 DOI: 10.3390/ijms13055290
    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition.
    Matched MeSH terms: Phenylalanine Ammonia-Lyase/metabolism
  19. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Int J Mol Sci, 2012;13(11):15321-42.
    PMID: 23203128 DOI: 10.3390/ijms131115321
    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (g(s)), intercellular CO(2) (C(i)), apparent quantum yield (ξ) and lower dark respiration rates (R(d)), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
    Matched MeSH terms: Phenylalanine Ammonia-Lyase/metabolism
  20. Imron MF, Hestianingsi WOA, Putranto TWC, Citrasari N, Abdullah SRS, Hasan HA, et al.
    Chemosphere, 2024 Apr;353:141595.
    PMID: 38438021 DOI: 10.1016/j.chemosphere.2024.141595
    Increasing aquaculture cultivation produces large quantities of wastewater. If not handled properly, it can have negative impacts on the environment. Constructed wetlands (CWs) are one of the phytoremediation methods that can be applied to treat aquaculture effluent. This research was aimed at determining the performance of Cyperus rotundus in removing COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate from the batch CW system. Treatment was carried out for 30 days with variations in the number of plants (10, 15, and 20) and variations in media height (10, 12, and 14 cm). The result showed that aquaculture effluent contains high levels of organic compounds and nutrients, and C. rotundus can grow and thrive in 100% of aquaculture effluent. Besides that, the use of C. rotundus in CWs with the effect of numbers of plants and media height showed performance of COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate with 70, 79, 90, 96, 64, 82, 92, and 48% of removal efficacy, respectively. There was no negative impact observed on C. rotundus growth after exposure to aquaculture effluent, as indicated by the increase in wet weight, dry weight, and growth rate when compared to the control. Thus, adding aquaculture effluent to CWs planted with C. rotundus supports the growth and development of plants while also performing phytoremediation.
    Matched MeSH terms: Ammonia
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links