Displaying publications 41 - 60 of 122 in total

Abstract:
Sort:
  1. Shafie NH, Esa NM, Ithnin H, Saad N, Pandurangan AK
    Int J Mol Sci, 2013;14(12):23545-58.
    PMID: 24317430 DOI: 10.3390/ijms141223545
    Inositol hexaphosphate (IP6), or phytic acid is a natural dietary ingredient and has been described as a "natural cancer fighter", being an essential component of nutritional diets. The marked anti-cancer effect of IP6 has resulted in our quest for an understanding of its mechanism of action. In particular, our data provided strong evidence for the induction of apoptotic cell death, which may be attributable to the up-regulation of Bax and down-regulation of Bcl-xl in favor of apoptosis. In addition, the up-regulation of caspase-3 and -8 expression and activation of both caspases may also contribute to the apoptotic cell death of human colorectal adenocarcinoma HT-29 cells when exposed to IP6. Collectively, this present study has shown that rice bran IP6 induces apoptosis, by regulating the pro- and anti-apoptotic markers; Bax and Bcl-xl and via the activation of caspase molecules (caspase-3 and -8).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  2. Ling LT, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD
    Molecules, 2010 Apr;15(4):2139-51.
    PMID: 20428033 DOI: 10.3390/molecules15042139
    Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 microg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  3. Saedi TA, Ghafourian S, Jafarlou M, Sabariah MN, Ismail P, Eusni RM, et al.
    J Biol Regul Homeost Agents, 2015 Apr-Jun;29(2):395-9.
    PMID: 26122228
    Tumor protein p53 encoded by the TP53 gene in humans is known as a cancer biomarker in patients diagnosed with cancer, and it plays an essential role in apoptosis, genomic stability, and inhibition of angiogenesis. Cancer therapies with common chemotherapy methods are effective, as known, but have some side effects. Berberis vulgaris is traditionally administrated as a cancer drug. The current research aims to evaluate p53 as a biomarker in WEHI-3 cell line and to demonstrate the Berberis vulgaris fruit crude extract (BVFCE) as a new anticancer drug. For this purpose, we evaluated the effect of BVFCE in different concentrations against WEHI-3cell line in vitro and determined the quantitative level of p53 gene in the treated WEHI-3 cells. The results demonstrated that even at only 1 mg/ml concentration of Berberis vulgaris crude extract, there was a low level of p53 biomarker expression on WEHI-3 cells in comparison with doxorubicin. Therefore, the current study suggests BVFCE as a reliable anti-leukaemic drug and candidate for anticancer therapy. However, further investigation need be carried out to confirm its efficiency in vivo.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  4. Lam KL, Yang KL, Sunderasan E, Ong MT
    Cell Prolif, 2012 Dec;45(6):577-85.
    PMID: 23046445 DOI: 10.1111/j.1365-2184.2012.00841.x
    OBJECTIVES: Latex from Hevea brasiliensis (natural rubber tree primarily cultivated for its rubber particles) has no known primary metabolic function, although its biological role is as a plant defence system. The present study has evaluated specific anti-proliferative effects of latex whole C-serum and its subfractions, on human cancer cell lines.

    MATERIALS AND METHODS: Cell viability assay using MTT, DNA fragmentation assay and real-time PCR were used to evaluate the cytotoxic effects of latex whole C-serum and its subfractions on the cell lines.

    RESULTS: MTT assay revealed very low LC(50) values, 2.0 and 280 ng/ml, for DCS and DCP treatments, respectively. DCS was proven to be more potent compared to DCP, in conferring specific anti-proliferative effects on the cancer cell lines. The study also indicated that anti-proliferative activity of pre-heated C-serum fractions diminished significantly.

    CONCLUSION: Although noteworthy cell death was reported, DNA fragmentation assay and real-time PCR confirmed that that induced by latex C-serum subfractions was not promoted via the classical apoptotic signalling pathway.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  5. Karimian H, Moghadamtousi SZ, Fadaeinasab M, Golbabapour S, Razavi M, Hajrezaie M, et al.
    Drug Des Devel Ther, 2014;8:1481-97.
    PMID: 25278746 DOI: 10.2147/DDDT.S68818
    Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3 ± 0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  6. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  7. Karimian H, Arya A, Fadaeinasab M, Razavi M, Hajrezaei M, Karim Khan A, et al.
    Drug Des Devel Ther, 2017;11:337-350.
    PMID: 28203057 DOI: 10.2147/DDDT.S121518
    BACKGROUND: The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action.

    MATERIALS AND METHODS: K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated.

    RESULTS: Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2.

    CONCLUSION: This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  8. Iman V, Mohan S, Abdelwahab SI, Karimian H, Nordin N, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:103-121.
    PMID: 28096658 DOI: 10.2147/DDDT.S115135
    Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29) by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also evidenced in vivo in zebrafish embryos, with results demonstrating significant distribution of apoptotic cells in embryos after a 24-hour treatment period. Meanwhile, anti-inflammatory action was evidenced by the significant dose-dependent girinimbine inhibition of nitric oxide production in lipopolysaccharide/interferon-gamma-induced cells along with significant inhibition of nuclear factor-kappa B translocation from the cytoplasm to nucleus in stimulated RAW 264.7 cells. Girinimbine was also shown to have considerable antioxidant activity whereby 20 μg/mL of girinimbine was equivalent to 82.17±1.88 μM of Trolox. In mice with carrageenan-induced peritonitis, oral pretreatment with girinimbine helped limit total leukocyte migration (mainly of neutrophils), and reduced pro-inflammatory cytokine levels (interleukin-1beta and tumor necrosis factor-alpha) in the peritoneal fluid. These findings strongly suggest that girinimbine could act as a chemopreventive and/or chemotherapeutic agent by inducing apoptosis while suppressing inflammation. There is a potential for girinimbine to be further investigated for its applicability in treating early stages of cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  9. Lai CS, Mas RH, Nair NK, Mansor SM, Navaratnam V
    J Ethnopharmacol, 2010 Feb 3;127(2):486-94.
    PMID: 19833183 DOI: 10.1016/j.jep.2009.10.009
    Typhonium flagelliforme is an indigenous plant of Malaysia and is used by the local communities to treat cancer. This study aims to identify the chemical constituents of Typhonium flagelliforme particularly those which have antiproliferative properties towards human cancer cell lines.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  10. Lai CS, Mas RH, Nair NK, Majid MI, Mansor SM, Navaratnam V
    J Ethnopharmacol, 2008 Jun 19;118(1):14-20.
    PMID: 18436400 DOI: 10.1016/j.jep.2008.02.034
    Typhonium flagelliforme (Lodd.) Blume (Araceae) is a Malaysian plant used locally to combat cancer. In order to evaluate its antiproliferative activity in vitro and to possibly identify the active chemical constituents, a bioactivity guided study was conducted on the extracts of this plant.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  11. Hussain S, Ullah F, Ayaz M, Ali Shah SA, Ali Shah AU, Shah SM, et al.
    Drug Des Devel Ther, 2019;13:4195-4205.
    PMID: 31849451 DOI: 10.2147/DDDT.S228971
    Background: Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds.

    Methods: In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase.

    Results: The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme.

    Conclusion: Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  12. Rad SK, Movafagh A
    Recent Pat Food Nutr Agric, 2021;12(1):45-57.
    PMID: 32807070 DOI: 10.2174/2212798411666200817120307
    BACKGROUND: Cinnamomum cassia (C. cassia) is an evergreen tree in China and Southern and Eastern Asia. In traditional medicine, cinnamon is widely used due to its many bioactivity effects.

    OBJECTIVE: The present novel study aims to evaluate and make a comparison of antioxidant and antiproliferative activities of different extractions of C. cassia bark using seven solvents having different polarities. Solvents polarity gradients start with the solvent of lower polarity, n-hexane, and end with water as the highest polar solvent. Among the extracts, acetone extract contains the highest phenolic and flavonoid contents; therefore, it is assessed for the ability to protect DNA from damage.

    METHODS: The extracts are evaluated for total phenolic, flavonoid contents and antioxidant activities, using FRAP, DPPH, superoxide, and hydroxyl and nitric oxide radicals scavenging assays. DNA damage protecting activity of the acetone extract is studied with the comet assay. Each of the extracts is studied for its antiproliferative effect against, MCF-7, MDA-MB-231(breast cancer), and HT29 (colon cancer), using MTT assay.

    RESULTS: The acetone extract exhibited the highest FRAP value, phenolic and flavonoids contents when compared to the other extracts and could protect 45% mouse fibroblast cell line (3T3-L1) from DNA damage at 30 μg/ml. The lowest IC50 value in DPPH, superoxide, and hydroxyl radicals scavenging was noticed in the ethyl acetate extract. IC50 value obtained for the hexane extract was the lowest compared to the other extracts in scavenging nitric oxide radicals. The hexane extract showed the highest antiproliferative effect against cancer cells followed by the chloroform extract. The ethyl acetate extract inhibited the proliferation of only MCF-7 by IC50 of 100 μg/ml, while the other extracts exhibited no IC50 in all the cancer cells.

    CONCLUSION: C. cassia showed promising antioxidant and anticancer activities with significant DNA damage protecting effect.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  13. Ismail IS, Nagakura Y, Hirasawa Y, Hosoya T, Lazim MI, Lajis NH, et al.
    J Nat Prod, 2009 Oct;72(10):1879-83.
    PMID: 19757855 DOI: 10.1021/np9003849
    Four new chromone alkaloids, chrotacumines A-D (1-4), consisting of a 5,7-dihydroxy-2-methylchromone, an N-Me piperidine ring, and an ester side chain were isolated from Dysoxylum acutangulum, and their structures including absolute configurations were elucidated on the basis of spectroscopic data interpretation including 2D NMR, CD spectra, and X-ray analysis. The known compound rohitukine (5) showed moderate cytotoxicity against human HL-60 promyelocytic leukemia and HCT-116 colon cancer cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*
  14. Nugroho AE, Hirasawa Y, Kawahara N, Goda Y, Awang K, Hadi AH, et al.
    J Nat Prod, 2009 Aug;72(8):1502-6.
    PMID: 19388660 DOI: 10.1021/np900115q
    A new bisindole alkaloid, bisnicalaterine A (1), consisting of two vobasine-type skeletons, and 3-epivobasinol (2) and 3-O-methylepivobasinol (3), with vobasine-type skeletons, were isolated from the leaves of Hunteria zeylanica, and their structures were elucidated on the basis of spectroscopic data and chemical correlation. Bisnicalaterine A showed moderate cytotoxicity against various human cancer cell lines.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*
  15. Taha H, Hadi AH, Nordin N, Najmuldeen IA, Mohamad K, Shirota O, et al.
    Chem Pharm Bull (Tokyo), 2011;59(7):896-7.
    PMID: 21720044
    Pseuduvarines A (1) and B (2), two new dioxoaporphine alkaloids with an amino moiety, were isolated from the stem bark of Pseuduvaria rugosa and their structures were elucidated by combination of 2D-NMR spectroscopic analysis. Pseuduvarines A (1) and B (2) showed cytotoxicity against MCF7, HepG2, and HL-60 (1: IC₅₀, 0.9, 21.7, and >50.0 µM, respectively, 2: IC₅₀ >50.0, 15.7, and 12.4 µM, respectively).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  16. Mohd Yusof YA
    Adv Exp Med Biol, 2016;929:177-207.
    PMID: 27771925
    Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  17. Ibrahim MY, Mohd Hashim N, Mohan S, Abdulla MA, Abdelwahab SI, Kamalidehghan B, et al.
    Drug Des Devel Ther, 2014;8:2193-211.
    PMID: 25395836 DOI: 10.2147/DDDT.S66574
    BACKGROUND: Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.

    METHODS: α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.

    RESULTS: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSION: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  18. Taha H, Looi CY, Arya A, Wong WF, Yap LF, Hasanpourghadi M, et al.
    PLoS One, 2015;10(5):e0126126.
    PMID: 25946039 DOI: 10.1371/journal.pone.0126126
    Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
  19. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*
  20. Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S
    Exp. Toxicol. Pathol., 2013 Mar;65(3):341-9.
    PMID: 22217449 DOI: 10.1016/j.etp.2011.11.005
    Species of Phyllanthus have traditionally been used for hundreds of years for treating many ailments including diabetes, anemia, bronchitis and hepatitis. The present study aims to investigate the cytotoxic and apoptotic effects of methanol (PWM), hexane (PWH) and ethyl acetate (PWE) extracts from the leaves of the endemic plant Phyllanthus watsonii Airy Shaw (Phyllanthaceae) on MCF-7 human breast cancer cells. We observed that the PWM, PWH and PWE extracts were cytotoxic and selectively inhibited the growth and proliferation of MCF-7 cells compared to untreated control in a dose dependent manner with an IC(50) of 12.7 ± 4.65, 7.9 ± 0.60 and 7.7 ± 0.29 μg/ml, respectively. However, the extracts were not toxic at these concentrations to normal human lung fibroblast MRC-5 cells. Cell death induced by PWM, PWH and PWE extracts were mainly due to apoptosis which was characterized by apoptotic morphological changes and a nuclear DNA fragmentation. Caspase-3 activation following P. watsonii extracts treatment was also evident for apoptotic cell death which was preceded by an S phase cell cycle perturbation. The results suggested that the cytotoxic activity of P. watsonii extracts was related to an early event of cell cycle perturbation and a later event of apoptosis. Hence, P. watsonii displays potential to be further exploited in the discovery and development of new anticancer agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links