Displaying publications 41 - 60 of 261 in total

Abstract:
Sort:
  1. Abidi SS
    J Med Syst, 2001 Jun;25(3):147-65.
    PMID: 11433545
    Worldwide healthcare delivery trends are undergoing a subtle paradigm shift--patient centered services as opposed to provider centered services and wellness maintenance as opposed to illness management. In this paper we present a Tele-Healthcare project TIDE--Tele-Healthcare Information and Diagnostic Environment. TIDE manifests an 'intelligent' healthcare environment that aims to ensure lifelong coverage of person-specific health maintenance decision-support services--i.e., both wellness maintenance and illness management services--ubiquitously available via the Internet/WWW. Taking on an all-encompassing health maintenance role--spanning from wellness to illness issues--the functionality of TIDE involves the generation and delivery of (a) Personalized, Pro-active, Persistent, Perpetual, and Present wellness maintenance services, and (b) remote diagnostic services for managing noncritical illnesses. Technically, TIDE is an amalgamation of diverse computer technologies--Artificial Intelligence, Internet, Multimedia, Databases, and Medical Informatics--to implement a sophisticated healthcare delivery infostructure.
    Matched MeSH terms: Artificial Intelligence
  2. Wong YJ, Shimizu Y, Kamiya A, Maneechot L, Bharambe KP, Fong CS, et al.
    Environ Monit Assess, 2021 Jun 22;193(7):438.
    PMID: 34159431 DOI: 10.1007/s10661-021-09202-y
    Rivers in Malaysia are classified based on water quality index (WQI) that comprises of six parameters, namely, ammoniacal nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), pH, and suspended solids (SS). Due to its tropical climate, the impact of seasonal monsoons on river quality is significant, with the increased occurrence of extreme precipitation events; however, there has been little discussion on the application of artificial intelligence models for monsoonal river classification. In light of these, this study had applied artificial neural network (ANN) and support vector machine (SVM) models for monsoonal (dry and wet seasons) river classification using three of the water quality parameters to minimise the cost of river monitoring and associated errors in WQI computation. A structured trial-and-error approach was applied on input parameter selection and hyperparameter optimisation for both models. Accuracy, sensitivity, and precision were selected as the performance criteria. For dry season, BOD-DO-pH was selected as the optimum input combination by both ANN and SVM models, with testing accuracy of 88.7% and 82.1%, respectively. As for wet season, the optimum input combinations of ANN and SVM models were BOD-pH-SS and BOD-DO-pH with testing accuracy of 89.5% and 88.0%, respectively. As a result, both optimised ANN and SVM models have proven their prediction capacities for river classification, which may be deployed as effective and reliable tools in tropical regions. Notably, better learning and higher capacity of the ANN model for dataset characteristics extraction generated better predictability and generalisability than SVM model under imbalanced dataset.
    Matched MeSH terms: Artificial Intelligence
  3. Ismail Musirin, Titik Khawa Abdul Rahman
    Scientific Research Journal, 2006;3(1):11-25.
    MyJurnal
    Several incidents that occurred around the world involving power failure
    caused by unscheduled line outages were identified as one of the main
    contributors to power failure and cascading blackout in electric power
    environment. With the advancement of computer technologies, artificial
    intelligence (AI) has been widely accepted as one method that can be applied
    to predict the occurrence of unscheduled disturbance. This paper presents
    the development of automatic contingency analysis and ranking algorithm
    for the application in the Artificial Neural Network (ANN). The ANN is
    developed in order to predict the post-outage severity index from a set of preoutage
    data set. Data were generated using the newly developed automatic
    contingency analysis and ranking (ACAR) algorithm. Tests were conducted
    on the 24-bus IEEE Reliability Test Systems. Results showed that the developed
    technique is feasible to be implemented practically and an agreement was
    achieved in the results obtained from the tests. The developed ACAR can be
    utilised for further testing and implementation in other IEEE RTS test systems
    particularly in the system, which required fast computation time. On the other
    hand, the developed ANN can be used for predicting the post-outage severity
    index and hence system stability can be evaluated.
    Matched MeSH terms: Artificial Intelligence
  4. Lim CP, Harrison RF, Kennedy RL
    Artif Intell Med, 1997 Nov;11(3):215-39.
    PMID: 9413607
    This paper presents a study of the application of autonomously learning multiple neural network systems to medical pattern classification tasks. In our earlier work, a hybrid neural network architecture has been developed for on-line learning and probability estimation tasks. The network has been shown to be capable of asymptotically achieving the Bayes optimal classification rates, on-line, in a number of benchmark classification experiments. In the context of pattern classification, however, the concept of multiple classifier systems has been proposed to improve the performance of a single classifier. Thus, three decision combination algorithms have been implemented to produce a multiple neural network classifier system. Here the applicability of the system is assessed using patient records in two medical domains. The first task is the prognosis of patients admitted to coronary care units; whereas the second is the prediction of survival in trauma patients. The results are compared with those from logistic regression models, and implications of the system as a useful clinical diagnostic tool are discussed.
    Matched MeSH terms: Artificial Intelligence*
  5. Reduwan NH, Abdul Aziz AA, Mohd Razi R, Abdullah ERMF, Mazloom Nezhad SM, Gohain M, et al.
    BMC Oral Health, 2024 Feb 19;24(1):252.
    PMID: 38373931 DOI: 10.1186/s12903-024-03910-w
    BACKGROUND: Artificial intelligence has been proven to improve the identification of various maxillofacial lesions. The aim of the current study is two-fold: to assess the performance of four deep learning models (DLM) in external root resorption (ERR) identification and to assess the effect of combining feature selection technique (FST) with DLM on their ability in ERR identification.

    METHODS: External root resorption was simulated on 88 extracted premolar teeth using tungsten bur in different depths (0.5 mm, 1 mm, and 2 mm). All teeth were scanned using a Cone beam CT (Carestream Dental, Atlanta, GA). Afterward, a training (70%), validation (10%), and test (20%) dataset were established. The performance of four DLMs including Random Forest (RF) + Visual Geometry Group 16 (VGG), RF + EfficienNetB4 (EFNET), Support Vector Machine (SVM) + VGG, and SVM + EFNET) and four hybrid models (DLM + FST: (i) FS + RF + VGG, (ii) FS + RF + EFNET, (iii) FS + SVM + VGG and (iv) FS + SVM + EFNET) was compared. Five performance parameters were assessed: classification accuracy, F1-score, precision, specificity, and error rate. FST algorithms (Boruta and Recursive Feature Selection) were combined with the DLMs to assess their performance.

    RESULTS: RF + VGG exhibited the highest performance in identifying ERR, followed by the other tested models. Similarly, FST combined with RF + VGG outperformed other models with classification accuracy, F1-score, precision, and specificity of 81.9%, weighted accuracy of 83%, and area under the curve (AUC) of 96%. Kruskal Wallis test revealed a significant difference (p = 0.008) in the prediction accuracy among the eight DLMs.

    CONCLUSION: In general, all DLMs have similar performance on ERR identification. However, the performance can be improved by combining FST with DLMs.

    Matched MeSH terms: Artificial Intelligence
  6. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A
    Comput Biol Med, 2020 06;121:103795.
    PMID: 32568676 DOI: 10.1016/j.compbiomed.2020.103795
    Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
    Matched MeSH terms: Artificial Intelligence
  7. Yau KL, Poh GS, Chien SF, Al-Rawi HA
    ScientificWorldJournal, 2014;2014:209810.
    PMID: 24995352 DOI: 10.1155/2014/209810
    Cognitive radio (CR) enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL), which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR.
    Matched MeSH terms: Artificial Intelligence*
  8. Tham SY, Agatonovic-Kustrin S
    J Pharm Biomed Anal, 2002 May 15;28(3-4):581-90.
    PMID: 12008137
    Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.
    Matched MeSH terms: Artificial Intelligence
  9. Tsoi K, Yiu K, Lee H, Cheng HM, Wang TD, Tay JC, et al.
    J Clin Hypertens (Greenwich), 2021 03;23(3):568-574.
    PMID: 33533536 DOI: 10.1111/jch.14180
    The prevalence of hypertension is increasing along with an aging population, causing millions of premature deaths annually worldwide. Low awareness of blood pressure (BP) elevation and suboptimal hypertension diagnosis serve as the major hurdles in effective hypertension management. The advent of artificial intelligence (AI), however, sheds the light of new strategies for hypertension management, such as remote supports from telemedicine and big data-derived prediction. There is considerable evidence demonstrating the feasibility of AI applications in hypertension management. A foreseeable trend was observed in integrating BP measurements with various wearable sensors and smartphones, so as to permit continuous and convenient monitoring. In the meantime, further investigations are advised to validate the novel prediction and prognostic tools. These revolutionary developments have made a stride toward the future model for digital management of chronic diseases.
    Matched MeSH terms: Artificial Intelligence
  10. Abidi SS
    PMID: 10724926
    Presently, there is a growing demand from the healthcare community to leverage upon and transform the vast quantities of healthcare data into value-added, 'decision-quality' knowledge, vis-à-vis, strategic knowledge services oriented towards healthcare management and planning. To meet this end, we present a Strategic Knowledge Services Info-structure that leverages on existing healthcare knowledge/data bases to derive decision-quality knowledge-knowledge that is extracted from healthcare data through services akin to knowledge discovery in databases and data mining.
    Matched MeSH terms: Artificial Intelligence*
  11. Futane A, Jadhav P, Mustafa AH, Srinivasan A, Narayanamurthy V
    Biotechnol Lett, 2024 Feb;46(1):1-17.
    PMID: 38155321 DOI: 10.1007/s10529-023-03454-z
    Metal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications. Advancements in AI and machine learning led to the development of nonporous MOFs and nanoscale MOFs for medical purposes. MOFs have exhibited promise in cancer therapy, with the successful accumulation of a photosensitizer in cancer cells representing a significant breakthrough. This perspective is focused on MOFs' use as advanced materials and systems for cancer therapy, exploring the challenging aspects and promising features of MOF-based cancer diagnosis and treatment. The paper concludes by emphasizing the potential of MOFs as a transformative technology for cancer treatment and diagnosis.
    Matched MeSH terms: Artificial Intelligence
  12. Ihtatho D, Fadzil MH, Affandi AM, Hussein SH
    PMID: 18002738
    Psoriasis is a skin disorder which is caused by genetic fault. There is no cure for psoriasis, however, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, PASI (Psoriasis Area and Severity Index) which is the current gold standard method is used to measure psoriasis severity by evaluating the area, erythema, scaliness and thickness of the plaques. However, the calculation of PASI can be tedious and subjective. In this work, we develop a computer vision method that determines one of the PASI parameter, the lesion area. The method isolates healthy (or healed) skin areas from lesion areas by analyzing the hue and chroma information in the CIE L*a*b* colour space. Centroids of healthy skin and psoriasis in the hue-chroma space are determined from selected sample. Euclidean distance of all pixels from each centroid is calculated. Each pixel is assigned to the class with minimum Euclidean distance. The study involves patients from three different ethnic origins having different skin tones. Results obtained show that the proposed method is comparable to the dermatologist visual approach.
    Matched MeSH terms: Artificial Intelligence
  13. Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, et al.
    Biomed Res Int, 2021;2021:9751564.
    PMID: 34258283 DOI: 10.1155/2021/9751564
    Objective: The objective of this systematic review was to investigate the quality and outcome of studies into artificial intelligence techniques, analysis, and effect in dentistry.

    Materials and Methods: Using the MeSH keywords: artificial intelligence (AI), dentistry, AI in dentistry, neural networks and dentistry, machine learning, AI dental imaging, and AI treatment recommendations and dentistry. Two investigators performed an electronic search in 5 databases: PubMed/MEDLINE (National Library of Medicine), Scopus (Elsevier), ScienceDirect databases (Elsevier), Web of Science (Clarivate Analytics), and the Cochrane Collaboration (Wiley). The English language articles reporting on AI in different dental specialties were screened for eligibility. Thirty-two full-text articles were selected and systematically analyzed according to a predefined inclusion criterion. These articles were analyzed as per a specific research question, and the relevant data based on article general characteristics, study and control groups, assessment methods, outcomes, and quality assessment were extracted.

    Results: The initial search identified 175 articles related to AI in dentistry based on the title and abstracts. The full text of 38 articles was assessed for eligibility to exclude studies not fulfilling the inclusion criteria. Six articles not related to AI in dentistry were excluded. Thirty-two articles were included in the systematic review. It was revealed that AI provides accurate patient management, dental diagnosis, prediction, and decision making. Artificial intelligence appeared as a reliable modality to enhance future implications in the various fields of dentistry, i.e., diagnostic dentistry, patient management, head and neck cancer, restorative dentistry, prosthetic dental sciences, orthodontics, radiology, and periodontics.

    Conclusion: The included studies describe that AI is a reliable tool to make dental care smooth, better, time-saving, and economical for practitioners. AI benefits them in fulfilling patient demand and expectations. The dentists can use AI to ensure quality treatment, better oral health care outcome, and achieve precision. AI can help to predict failures in clinical scenarios and depict reliable solutions. However, AI is increasing the scope of state-of-the-art models in dentistry but is still under development. Further studies are required to assess the clinical performance of AI techniques in dentistry.

    Matched MeSH terms: Artificial Intelligence/trends*
  14. Singh NK, Yadav M, Singh V, Padhiyar H, Kumar V, Bhatia SK, et al.
    Bioresour Technol, 2023 Feb;369:128486.
    PMID: 36528177 DOI: 10.1016/j.biortech.2022.128486
    Artificial intelligence (AI) and machine learning (ML) are currently used in several areas. The applications of AI and ML based models are also reported for monitoring and design of biological wastewater treatment systems (WWTS). The available information is reviewed and presented in terms of bibliometric analysis, model's description, specific applications, and major findings for investigated WWTS. Among the applied models, artificial neural network (ANN), fuzzy logic (FL) algorithms, random forest (RF), and long short-term memory (LSTM) were predominantly used in the biological wastewater treatment. These models are tested by predictive control of effluent parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), nutrient parameters, solids, and metallic substances. Following model performance indicators were mainly used for the accuracy analysis in most of the studies: root mean squared error (RMSE), mean square error (MSE), and determination coefficient (DC). Besides, outcomes of various models are also summarized in this study.
    Matched MeSH terms: Artificial Intelligence*
  15. Boon IS, Lim JS, Yap MH, Au Yong TPT, Boon CS
    J Med Imaging Radiat Sci, 2020 12;51(4S):S114-S115.
    PMID: 32859543 DOI: 10.1016/j.jmir.2020.08.011
    Matched MeSH terms: Artificial Intelligence*
  16. Khoriati AA, Shahid Z, Fok M, Frank RM, Voss A, D'Hooghe P, et al.
    J ISAKOS, 2024 Apr;9(2):227-233.
    PMID: 37949113 DOI: 10.1016/j.jisako.2023.10.015
    Matched MeSH terms: Artificial Intelligence*
  17. Bhattacharya S, Pradhan KB, Bashar MA, Tripathi S, Semwal J, Marzo RR, et al.
    J Family Med Prim Care, 2019 Nov;8(11):3461-3464.
    PMID: 31803636 DOI: 10.4103/jfmpc.jfmpc_155_19
    In this paper, we have described the health care problem (maldistribution of doctors) in India. Later, we have introduced the concept of artificial intelligence and we have described this technology with various examples, how it is rapidly changing the health care scenario across the world. We have also described the various advantages of artificial intelligence technology. At the end of the paper, we have raised some serious concerns regarding complete replacement of human based health care technology with artificial intelligence technology. Lastly, we concluded that we have to use artificial intelligent technology to prevent human sufferings/health care problems with proper caution.
    Matched MeSH terms: Artificial Intelligence
  18. Spinelli A, Carrano FM, Laino ME, Andreozzi M, Koleth G, Hassan C, et al.
    Tech Coloproctol, 2023 Aug;27(8):615-629.
    PMID: 36805890 DOI: 10.1007/s10151-023-02772-8
    Artificial intelligence (AI) has the potential to revolutionize surgery in the coming years. Still, it is essential to clarify what the meaningful current applications are and what can be reasonably expected. This AI-powered review assessed the role of AI in colorectal surgery. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic search of PubMed, Embase, Scopus, Cochrane Library databases, and gray literature was conducted on all available articles on AI in colorectal surgery (from January 1 1997 to March 1 2021), aiming to define the perioperative applications of AI. Potentially eligible studies were identified using novel software powered by natural language processing (NLP) and machine learning (ML) technologies dedicated to systematic reviews. Out of 1238 articles identified, 115 were included in the final analysis. Available articles addressed the role of AI in several areas of interest. In the preoperative phase, AI can be used to define tailored treatment algorithms, support clinical decision-making, assess the risk of complications, and predict surgical outcomes and survival. Intraoperatively, AI-enhanced surgery and integration of AI in robotic platforms have been suggested. After surgery, AI can be implemented in the Enhanced Recovery after Surgery (ERAS) pathway. Additional areas of applications included the assessment of patient-reported outcomes, automated pathology assessment, and research. Available data on these aspects are limited, and AI in colorectal surgery is still in its infancy. However, the rapid evolution of technologies makes it likely that it will increasingly be incorporated into everyday practice.
    Matched MeSH terms: Artificial Intelligence*
  19. Mak KK, Pichika MR
    Drug Discov Today, 2019 03;24(3):773-780.
    PMID: 30472429 DOI: 10.1016/j.drudis.2018.11.014
    Artificial intelligence (AI) uses personified knowledge and learns from the solutions it produces to address not only specific but also complex problems. Remarkable improvements in computational power coupled with advancements in AI technology could be utilised to revolutionise the drug development process. At present, the pharmaceutical industry is facing challenges in sustaining their drug development programmes because of increased R&D costs and reduced efficiency. In this review, we discuss the major causes of attrition rates in new drug approvals, the possible ways that AI can improve the efficiency of the drug development process and collaboration of pharmaceutical industry giants with AI-powered drug discovery firms.
    Matched MeSH terms: Artificial Intelligence*
  20. Wong KF, Lam XY, Jiang Y, Yeung AWK, Lin Y
    Head Face Med, 2023 Aug 23;19(1):38.
    PMID: 37612673 DOI: 10.1186/s13005-023-00383-0
    BACKGROUND: The application of artificial intelligence (AI) in orthodontics and orthognathic surgery has gained significant attention in recent years. However, there is a lack of bibliometric reports that analyze the academic literature in this field to identify publishing and citation trends. By conducting an analysis of the top 100 most-cited articles on AI in orthodontics and orthognathic surgery, we aim to unveil popular research topics, key authors, institutions, countries, and journals in this area.

    METHODS: A comprehensive search was conducted in the Web of Science (WOS) electronic database to identify the top 100 most-cited articles on AI in orthodontics and orthognathic surgery. Publication and citation data were obtained and further analyzed and visualized using R Biblioshiny. The key domains of the 100 articles were also identified.

    RESULTS: The top 100 most-cited articles were published between 2005 and 2022, contributed by 458 authors, with an average citation count of 22.09. South Korea emerged as the leading contributor with the highest number of publications (28) and citations (595), followed by China (16, 373), and the United States (7, 248). Notably, six South Korean authors ranked among the top 10 contributors, and three South Korean institutions were listed as the most productive. International collaborations were predominantly observed between the United States, China, and South Korea. The main domains of the articles focused on automated imaging assessment (42%), aiding diagnosis and treatment planning (34%), and the assessment of growth and development (10%). Besides, a positive correlation was observed between the testing sample size and citation counts (P = 0.010), as well as between the time of publication and citation counts (P 

    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links