Displaying publications 41 - 60 of 78 in total

Abstract:
Sort:
  1. Lutterodt GD, Maleque A
    J Ethnopharmacol, 1988 Dec;24(2-3):219-31.
    PMID: 3253493
    Studies were carried out on the suppression of both exploratory and spontaneous locomotor activities in the mouse by a non-polar fraction from a methanol extract of the dried leaves of Psidium guajava. Shortly after intraperitoneal administration of this fraction, typical narcotic-like effects were observed, including catalepsy, analgesia, Straub tail, shallow respiratory movements and exophthalmos. The dose for 90% suppression of exploratory activity was between 3.3 and 6.6 mg/kg intraperitoneally and the onset of action was 6-8 min. The duration of activity was dose-dependent and, for a dose of 13.2 mg/kg given intraperitoneally, it was found to be more than 6 h. Qualitatively similar results on exploratory activity were obtained when the extract was administered orally. Doses of 3.3-6.6 mg/kg i.p. depressed spontaneous locomotor activity and tunnel running was curtailed. Higher doses abolished the spontaneous locomotor reflex action. A flavonoid compound or compounds appear to account for the activity seen.
    Matched MeSH terms: Behavior, Animal/drug effects
  2. Lee HC, Hamzah H, Leong MP, Md Yusof H, Habib O, Zainal Abidin S, et al.
    Sci Rep, 2021 Feb 15;11(1):3847.
    PMID: 33589712 DOI: 10.1038/s41598-021-83222-z
    Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
    Matched MeSH terms: Behavior, Animal/drug effects
  3. Kumar J, Hapidin H, Bee YT, Ismail Z
    Behav Brain Funct, 2013;9:43.
    PMID: 24279870 DOI: 10.1186/1744-9081-9-43
    Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety.
    Matched MeSH terms: Behavior, Animal/drug effects*
  4. Khor YM, Soga T, Parhar IS
    Gen Comp Endocrinol, 2013 Jan 15;181:310-5.
    PMID: 23044054 DOI: 10.1016/j.ygcen.2012.09.021
    The early-life stress has critical impact on brain development which can lead to long-term effects on brain functions during adulthood. It has been reported that caffeine possesses a protective effect in neurodegenerative diseases. Thus, this study investigates the potential of caffeine to protect brain functions from adverse effects due to stress exposure during early-life development in the male zebrafish. In the first part of this study, synthetic glucocorticoid, dexamethasone (DEX) (2-200 mg/L for 24 h) was used to induce stress effects in the zebrafish larvae from 4 to 5 days post-fertilisation (dpf) and the effect of DEX administration on zebrafish larvae on anxiety-like behaviour during adulthood in novel tank test was investigated. Next, the possible protective effect of caffeine pre-treatment (5-50 mg/L for 24 h from 3 to 4dpf) before DEX administration was studied. DEX-treated adult male zebrafish showed higher anxiety levels in behavioural tests, as seen in longer latency to enter the top part of the tank, lower transition numbers between the top and bottom parts with more time spent at the bottom and lesser time spent at the top and lower distance travelled at top part. The effect of DEX on anxiety-like behaviour was dose-dependent. Importantly, adult male zebrafish pre-treated with caffeine before DEX treatment did not show any anxiety-like behaviour. These results show that exposure to stress during early-life leads to anxiety-like behaviour in the adult male zebrafish but pre-treatment with caffeine protects from stress-induced anxiety.
    Matched MeSH terms: Behavior, Animal/drug effects
  5. Khor BS, Jamil MF, Adenan MI, Shu-Chien AC
    PLoS One, 2011;6(12):e28340.
    PMID: 22205946 DOI: 10.1371/journal.pone.0028340
    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway.
    Matched MeSH terms: Behavior, Animal/drug effects
  6. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 01;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.

    AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.

    MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.

    RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.

    CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.

    Matched MeSH terms: Behavior, Animal/drug effects
  7. Khalid A, Shakeel R, Justin S, Iqbal G, Shah SAA, Zahid S, et al.
    Curr Drug Targets, 2017;18(13):1545-1557.
    PMID: 28302036 DOI: 10.2174/1389450118666170315120627
    BACKGROUND: Stress is involved in memory impairment through multiple mechanisms, including activation of hypothalamic-pituitary axis, which in turn activates release of corticosterone in blood. Cholinergic system blockade by the muscarinic antagonist, scopolamine, also impairs memory.

    OBJECTIVE: This study aimed to investigate the effect of turmeric (20mg/kg) on learning and memory and cholinergic system in a mouse model of stress along with cholinergic blockade.

    METHODS: Restrained stress was induced and cholinergic receptors were blocked using scopolamine in mice. Animals were treated with turmeric (turmeric rhizome powder which was also subjected to NMR analyses) and learning and social behavior was examined. Effect of turmeric on cholinergic muscarinic receptors (mAChR; M1, M3 and M5) gene expression was assessed by RT-PCR in both pre-frontal cortex and hippocampus.

    RESULTS: Ar-turmerone, curcuminoids and α-linolenic acid were the lead compounds present in turmeric extract. Increased serum corticosterone levels were observed in stressed mice when compared to the control group, while turmeric treatment significantly reduced serum corticosterone level. Turmeric treatment caused an improved learning and memory in Morris water maze test in stressed animals. Social novelty preference was also restored in turmeric treated animals. Following turmeric treatment, M5 expression was improved in the cortex and M3 expression was improved in the hippocampus of stress + scopolamine + turmeric treated group.

    CONCLUSIONS: These findings highlight the therapeutic role of turmeric by increasing the expression of M3, M5 and improving learning and memory. Turmeric can be an effective candidate for the treatment of amnesia caused by the stress.

    Matched MeSH terms: Behavior, Animal/drug effects
  8. Keng-Hong T, Nishida R
    J Chem Ecol, 2005 Mar;31(3):497-507.
    PMID: 15898497
    Bulbophyllum apertum flower (Orchidaceae) releases raspberry ketone (RK) in its fragrance, which attracts males of several fruit fly species belonging to the genus Bactrocera. Besides RK as a major component, the flower contains smaller amounts of 4-(4-hydroxylphenyl)-2-butanol, plus two minor volatile components, veratryl alcohol and vanillyl alcohol. Within the flower, the lip (labellum) had the highest concentration of RK with much smaller quantities present in petals; other flower parts had no detectable RK. Male fruit flies attracted to the flower belong to RK-sensitive species--such as Bactrocera albistragata, B. caudatus, B. cucurbitae (melon fly), and B. tau. Removal and attachment of the pollinarium to a fly's thoracic dorsum occurred when a male of B. albistragata was toppled into the floral column cavity, due to an imbalance caused by it shifting its body weight while feeding on the see-saw lip, and then freeing itself after being momentarily trapped between the lip and column. During this process, the stiff hamulus (the pollinia stalk protruding prominently towards the lip) acted as a crowbar when it was brushed downwards by the toppled fly and lifted the pollinia out of the anther. If the fly was big or long for the small triangular lip, it would not be toppled into the column cavity and would just walk across the column, during which time the pollinarium could be accidentally removed by the fly's leg, resulting in a failed transport of the pollinarium. This suggests an unstable situation, where the orchid relies only on a particular pollinator species in the complex ecosystem where many RK-sensitive species inhabit. Wild males of B. caudatus (most common visitors) captured on Bulbophyllum apertum flowers were found to sequester RK in their bodies as a potential pheromonal and allomonal ingredient. Thus, RK can act either as a floral synomone (pollinarium transported) or kairomone (accidental removal of pollinarium leading to total pollen wastage), depending on the body size of the male fruit flies visiting the flowers.
    Matched MeSH terms: Behavior, Animal/drug effects
  9. Kamishima M, Hattori T, Suzuki G, Matsukami H, Komine C, Horii Y, et al.
    J Appl Toxicol, 2018 05;38(5):649-655.
    PMID: 29271492 DOI: 10.1002/jat.3569
    Exposure to endocrine-disrupting chemicals may adversely affect animals, particularly during development. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) is an organophosphate with anti-androgen function in vitro that is present in indoor dust at relatively high concentrations. In male rats, androgens are necessary for the development of reproductive organs, as well as the endocrine and central nervous systems. However, we currently do not know the exact effects of TDCIPP exposure through suckling on subsequent reproductive behavior in males. Here, we show that TDCIPP exposure (25-250 mg kg-1 via oral administration over 28 consecutive days post-birth) suppressed male sexual behavior and reduced testes size. These changes were dose-dependent and appeared first in adults rather than in juveniles. These results demonstrate that TDCIPP exposure led to normal body growth and appearance in juveniles, but disrupted the endocrine system and physiology in adults. Therefore, assays should be performed using adult animals to ensure accuracy, and to confirm the influence of chemical substances given during early mammalian life.
    Matched MeSH terms: Sexual Behavior, Animal/drug effects*
  10. Kamarudin N, Hisamuddin N, Ong HM, Ahmad Azmi AF, Leong SW, Abas F, et al.
    Molecules, 2018 Aug 21;23(9).
    PMID: 30134576 DOI: 10.3390/molecules23092099
    Curcuminoids derived from turmeric rhizome have been reported to exhibit antinociceptive, antioxidant and anti-inflammatory activities. We evaluated the peripheral and central antinociceptive activities of 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), a novel synthetic curcuminoid analogue at 0.1, 0.3, 1 and 3 mg/kg (intraperitoneal), through chemical and thermal models of nociception. The effects of DHHPD on the vanilloid and glutamatergic systems were evaluated through the capsaicin- and glutamate-induced paw licking tests. Results showed that DHHPD significantly (p < 0.05) attenuated the writhing response produced by the 0.8% acetic acid injection. In addition, 1 and 3 mg/kg of DHHPD significantly (p < 0.05) reduced the licking time spent by each mouse in both phases of the 2.5% formalin test and increased the response latency of mice on the hot-plate. However, the effect produced in the latter was not reversed by naloxone, a non-selective opioid receptor antagonist. Despite this, DHHPD decreased the licking latency of mice in the capsaicin- and glutamate-induced paw licking tests in a dose response manner. In conclusion, DHHPD showed excellent peripheral and central antinociceptive activities possibly by attenuation of the synthesis and/or release of pro-inflammatory mediators in addition to modulation of the vanilloid and glutamatergic systems without an apparent effect on the opioidergic system.
    Matched MeSH terms: Behavior, Animal/drug effects
  11. Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Sasidharan S
    Molecules, 2011 Jun 23;16(6):5268-82.
    PMID: 21701437 DOI: 10.3390/molecules16065268
    BACKGROUND AND OBJECTIVE: Cassia fistula is widely used in traditional medicine to treat various types of ailments. The evaluation of toxic properties of C. fistula is crucial when considering public health protection because exposure to plant extracts can result in undesirable effects on consumers. Hence, in this study the acute oral toxicity of C. fistula seeds extract was investigated in mice.

    RESULTS: Oral administration of crude extract at the highest dose of 5000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that C. fistula in nontoxic. Throughout 14 days of the treatment no changes in behavioural pattern, clinical sign and body weight of mice in both control and treatment groups. Also there were no any significant elevations observed in the biochemical analysis of the blood serum. Further, histopathological examination revealed normal architecture and no significant adverse effects observed on the kidney, heart, liver, lung and spleen.

    CONCLUSIONS: Overall, the results suggest that, the oral administration of C. fistula methanolic seeds extract did not produce any significant toxic effect in mice. Hence, the extract can be utilized for pharmaceutical formulations.

    Matched MeSH terms: Behavior, Animal/drug effects*
  12. Japarin RA, Yusoff NH, Hassan Z, Müller CP, Harun N
    Behav Brain Res, 2021 02 05;399:113021.
    PMID: 33227244 DOI: 10.1016/j.bbr.2020.113021
    Kratom is a medicinal plant that exhibits promising results as an opiate substitute. However, there is little information regarding the abuse profile of its main psychoactive constituent, mitragynine (MG), particularly in relapse to drug abuse. Using the place conditioning procedure as a model of relapse, this study aims to evaluate the ability of MG to induce conditioned place preference (CPP) reinstatement in rats. To evaluate the cross-reinstatement effects, MG and morphine were injected to rats that previously extinguished a morphine- or MG-induced CPP. Following a CPP acquisition induced by either MG (10 and 30 mg/kg, i.p.) or morphine (10 mg/kg, i.p.), rats were subjected to repeated CPP extinction sessions. A low dose priming injection of MG or morphine produced a reinstatement of the previously extinguished CPP. In the second experiment of this study, a priming injection of morphine (1, 3 and 10 mg/kg, i.p.) dose-dependently reinstated an MG-induced CPP. Likewise, a priming injection of MG (3, 10 and 30 mg/kg, i.p.) was able to dose-dependently reinstate a morphine-induced CPP. The present study demonstrates a cross-reinstatement effect between MG and morphine, thereby suggesting a similar interaction in their rewarding motivational properties. The findings from this study also suggesting that a priming exposure to kratom and an opioid may cause relapse for a previously abused drug.
    Matched MeSH terms: Behavior, Animal/drug effects
  13. Ismail NIW, Jayabalan N, Mansor SM, Müller CP, Muzaimi M
    Addict Biol, 2017 Jul;22(4):967-976.
    PMID: 26990882 DOI: 10.1111/adb.12385
    Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential.
    Matched MeSH terms: Behavior, Animal/drug effects*
  14. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I
    Diabetes Metab J, 2019 Apr;43(2):222-235.
    PMID: 30604591 DOI: 10.4093/dmj.2018.0020
    BACKGROUND: This study investigated the role of NR2B in a modulated pain process in the painful diabetic neuropathy (PDN) rat using various pain stimuli.

    METHODS: Thirty-two Sprague-Dawley male rats were randomly allocated into four groups (n=8): control, diabetes mellitus (DM) rats and diabetic rats treated with ifenprodil at a lower dose (0.5 μg/day) (I 0.5) or higher dose (1.0 μg/day) (I 1.0). DM was induced by a single injection of streptozotocin at 60 mg/kg on day 0 of experimentation. Diabetic status was assessed on day 3 of the experimentation. The responses on both tactile and thermal stimuli were assessed on day 0 (baseline), day 14 (pre-intervention), and day 22 (post-intervention). Ifenprodil was given intrathecally for 7 days from day 15 until day 21. On day 23, 5% formalin was injected into the rats' hind paw and the nociceptive responses were recorded for 1 hour. The rats were sacrificed 72 hours post-formalin injection and an analysis of the spinal NR2B expression was performed.

    RESULTS: DM rats showed a significant reduction in pain threshold in response to the tactile and thermal stimuli and higher nociceptive response during the formalin test accompanied by the higher expression of phosphorylated spinal NR2B in both sides of the spinal cord. Ifenprodil treatment for both doses showed anti-allodynic and anti-nociceptive effects with lower expression of phosphorylated and total spinal NR2B.

    CONCLUSION: We suggest that the pain process in the streptozotocin-induced diabetic rat that has been modulated is associated with the higher phosphorylation of the spinal NR2B expression in the development of PDN, which is similar to other models of neuropathic rats.

    Matched MeSH terms: Behavior, Animal/drug effects
  15. Idayu NF, Hidayat MT, Moklas MA, Sharida F, Raudzah AR, Shamima AR, et al.
    Phytomedicine, 2011 Mar 15;18(5):402-7.
    PMID: 20869223 DOI: 10.1016/j.phymed.2010.08.011
    Mitragyna speciosa Korth. leaves have been used for decades as a traditional medicine to treat diarrhea, diabetes and to improve blood circulation by natives of Malaysia, Thailand and other regions of Southeast Asia. Mitragynine is the major active alkaloid in the plant. To date, the role of mitragynine in psychological disorders such as depression is not scientifically evaluated. Hence, the present investigation evaluates the antidepressant effect of mitragynine in the mouse forced swim test (FST) and tail suspension test (TST), two models predictive of antidepressant activity and the effect of mitragynine towards neuroendocrine system of hypothalamic-pituitary-adrenal (HPA) axis by measuring the corticosterone concentration of mice exposed to FST and TST. An open-field test (OFT) was used to detect any association of immobility in the FST and TST with changes in motor activity of mice treated with mitragynine. In the present study, mitragynine at dose of 10 mg/kg and 30 mg/kg i.p. injected significantly reduced the immobility time of mice in both FST and TST without any significant effect on locomotor activity in OFT. Moreover, mitragynine significantly reduced the released of corticosterone in mice exposed to FST and TST at dose of 10 mg/kg and 30 mg/kg. Overall, the present study clearly demonstrated that mitragynine exerts an antidepressant effect in animal behavioral model of depression (FST and TST) and the effect appears to be mediated by an interaction with neuroendocrine HPA axis systems.
    Matched MeSH terms: Behavior, Animal/drug effects
  16. Hor SY, Ahmad M, Farsi E, Lim CP, Asmawi MZ, Yam MF
    J Ethnopharmacol, 2011 Oct 11;137(3):1067-76.
    PMID: 21767625 DOI: 10.1016/j.jep.2011.07.007
    Coriolus versicolor, which is known as Yun Zhi, is one of the commonly used Chinese medicinal herbs. Recent studies have demonstrated its antitumor activities on cancer cells which led to its widespread use in cancer patient. However, little toxicological information is available regarding its safety. The present study evaluated the potential toxicity of Coriolus versicolor standardized water extract after acute and subchronic administration in rats.
    Matched MeSH terms: Behavior, Animal/drug effects
  17. Ho K, Yazan LS, Ismail N, Ismail M
    Food Chem Toxicol, 2011 Jan;49(1):25-30.
    PMID: 20807560 DOI: 10.1016/j.fct.2010.08.023
    Vanillin is useful as anti-sickle cell anemia, anti-mutagen and anti-bacteria agent. However, vanillin must be administered at high concentration and cannot be oxidized by the upper gastrointestinal track of patients to be medically effective. In this study, we assessed the toxic effect of vanillin when administered in an un-oxidized form at high concentrations (150 and 300 mg/kg) via oral and intra-peritoneal injection. It was found that 300 mg/kg vanillin injection caused the rats to be unconscious without exerting any toxic effect on blood cells, kidney and liver. Besides, it showed blood protective property. Further analysis with GenomeLab GeXP genetic system on brain tissues showed that the expression of most xenobiotic metabolism, cell progression, tumor suppressor, DNA damage and inflammation genes were maintained at normal level. However, the expression of a few xenobiotic metabolism, cell cycle arrest and apoptosis genes were up-regulated by 5% ethanol injection. Nevertheless, when 5% ethanol was injected with the presence of vanillin, the expression was back to normal level. It is postulated that vanillin might have neuro-protective property. In conclusion, vanillin is not toxic at high concentration in both oral and intra-peritoneal injection and could provide blood and brain protective properties.
    Matched MeSH terms: Behavior, Animal/drug effects
  18. Hazim AI, Ramanathan S, Parthasarathy S, Muzaimi M, Mansor SM
    J Physiol Sci, 2014 May;64(3):161-9.
    PMID: 24464759 DOI: 10.1007/s12576-014-0304-0
    The effects of mitragynine on anxiety-related behaviours in the open-field and elevated plus-maze tests were evaluated. Male Sprague-Dawley rats were orally treated with mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) 60 min before behavioural testing. Mitragynine doses used in this study were selected on the basis of approximately human equivalent doses with reference to our previous literature reports. Acute administration of mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) increased central zone and open arms exploration in the open-field and elevated plus-maze tests respectively. These anxiolytic-like effects of mitragynine were effectively antagonized by intraperitoneal administration of naloxone (2 mg/kg), flumazenil (10 mg/kg), sulpiride (0.5 mg/kg) or SCH 23390 (0.02 mg/kg) 15 min before mitragynine treatments. These findings reveal that the acute administration of mitragynine produces anxiolytic-like effects and this could be possibly attributed to the interactions among opioidergic, GABAergic and dopaminergic systems in brain regions involved in anxiety.
    Matched MeSH terms: Behavior, Animal/drug effects*
  19. Hassan R, Othman N, Mansor SM, Müller CP, Hassan Z
    Brain Res Bull, 2021 07;172:139-150.
    PMID: 33901587 DOI: 10.1016/j.brainresbull.2021.04.018
    Mitragyna speciosa, also known as kratom, has been used for mitigating the severity of opioid withdrawal in humans. Its main indole alkaloid, mitragynine, has been considered as a pharmacotherapy for pain conditions and opioid replacement therapy. However, at high doses, chronic mitragynine may also have an addiction potential. The effects of chronic action of mitragynine in the brain are still unknown. The present study developed a mitragynine withdrawal model in rats and used it for a proteomic analysis of mitragynine withdrawal effects. Mitragynine (30 mg/kg, i.p.) was administered daily over a period of 14 days and then withdrawn. A proteomic analysis revealed that from a total of 1524 proteins identified, 31 proteins were upregulated, and 3 proteins were downregulated in the mitragynine withdrawal model. The Rab35 protein expression increased most profoundly in the mitragynine withdrawal group as compared to vehicle group. Therefore, it is proposed that Rab35 in the brain might be considered as a potential biomarker during mitragynine withdrawal and might be valuable target protein in developing new pharmacotherapies in the future.
    Matched MeSH terms: Behavior, Animal/drug effects
  20. Harun AM, Awang H, Noor NFM, Makhatar NM, Yusoff ME, Affandi NDN, et al.
    Biomed Res Int, 2021;2021:6173143.
    PMID: 34859102 DOI: 10.1155/2021/6173143
    BACKGROUND: Potential antibacterial substances, such as titanium dioxide (TiO2), are being extensively studied throughout the research world. A modified hydrothermal nanotitania extraction was shown to inhibit Staphylococcus aureus growth in the laboratory. However, the toxicity effect of the extract on rats is unknown. In this study, we observed the effects of a modified hydrothermal nanotitania extraction on the skin and behavior of Sprague-Dawley rats.

    METHODS: Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed.

    RESULTS: 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7.

    CONCLUSIONS: A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.

    Matched MeSH terms: Behavior, Animal/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links