Displaying publications 41 - 60 of 394 in total

Abstract:
Sort:
  1. Musthafa MM, Abdullah F, Koivula MJ
    PLoS One, 2022;17(3):e0266076.
    PMID: 35358260 DOI: 10.1371/journal.pone.0266076
    Biodiversity research relies largely on knowledge about species responses to environmental gradients, assessed using some commonly applied sampling method. However, the consistency of detected responses using different sampling methods, and thus the generality of findings, has seldom been assessed in tropical ecosystems. Hence, we studied the response consistency and indicator functioning of beetle assemblages in altitudinal gradients from two mountains in Malaysia, using Malaise, light, and pitfall traps. The data were analyzed using generalized linear mixed-effects models (GLMM), non-metric multidimensional scaling (NMDS), multivariate regression trees (MRT), and indicator species analysis (IndVal). We collected 198 morpho-species of beetles representing 32 families, with a total number of 3,052 individual beetles. The richness measures generally declined with increasing altitude. The mountains differed little in terms of light and Malaise trap data but differed remarkably in pitfall-trap data. Only light traps (but not the other trap types) distinguished high from middle or low altitudes in terms of beetle richness and assemblage composition. The lower altitudes hosted about twice as many indicators as middle or high altitudes, and many species were trap-type specific in our data. These results suggest that the three sampling methods reflected the altitudinal gradient in different ways and the detection of community variation in the environment thus depends on the chosen sampling method. However, also the analytical approach appeared important, further underlining the need to use multiple methods in environmental assessments.
    Matched MeSH terms: Biodiversity
  2. Grace MK, Akçakaya HR, Bennett EL, Brooks TM, Heath A, Hedges S, et al.
    Conserv Biol, 2021 12;35(6):1833-1849.
    PMID: 34289517 DOI: 10.1111/cobi.13756
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.
    Matched MeSH terms: Biodiversity
  3. Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, et al.
    Mol Ecol, 2021 11;30(22):5844-5857.
    PMID: 34437745 DOI: 10.1111/mec.16153
    Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
    Matched MeSH terms: Biodiversity
  4. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR
    PLoS Biol, 2021 Nov;19(11):e3001435.
    PMID: 34727097 DOI: 10.1371/journal.pbio.3001435
    Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
    Matched MeSH terms: Biodiversity
  5. Nakabayashi M, Kanamori T, Matsukawa A, Tangah J, Tuuga A, Malim PT, et al.
    Sci Rep, 2021 10 06;11(1):19819.
    PMID: 34615956 DOI: 10.1038/s41598-021-99341-6
    To propose proper conservation measures and to elucidate coexistence mechanisms of sympatric carnivore species, we assessed temporal activity patterns of the sympatric carnivore species using 37,379 photos collected for more than 3 years at three study sites in Borneo. We categorized activity patterns of nine carnivore species (one bear, three civets, two felids, one skunk, one mustelid, one linsang) by calculating the photo-capturing proportions at each time period (day, night, twilight). We then evaluated temporal activity overlaps by calculating the overlap coefficients. We identified six nocturnal (three civets, one felid, one skunk, one linsang), two diurnal (one felid, one mustelid), and one cathemeral (bear) species. Temporal activity overlaps were high among the nocturnal species. The two felid species possessing morphological and ecological similarities exhibited clear temporal niche segregation, but the three civet species with similar morphology and ecology did not. Broad dietary breadth may compensate for the high temporal niche overlaps among the nocturnal species. Despite the high species richness of Bornean carnivores, almost half are threatened with extinction. By comparing individual radio-tracking and our data, we propose that a long-term study of at least 2 or 3 years is necessary to understand animals' temporal activity patterns, especially for sun bears and civets, by camera-trapping and to establish effective protection measures.
    Matched MeSH terms: Biodiversity*
  6. Frias L, Hasegawa H, Chua TH, Sipangkui S, Stark DJ, Salgado-Lynn M, et al.
    Int J Parasitol, 2021 10;51(11):925-933.
    PMID: 33862059 DOI: 10.1016/j.ijpara.2021.03.003
    Parasites are important components of ecosystems, influencing trophic networks, competitive interactions and biodiversity patterns. Nonetheless, we are not nearly close to disentangling their complex roles in natural systems. Southeast Asia falls within global areas targeted as most likely to source parasites with zoonotic potential, where high rates of land conversion and fragmentation have altered the circulation of wildlife species and their parasites, potentially resulting in altered host-parasite systems. Although the overall biodiversity in the region predicts equally high, or even higher, parasite diversity, we know surprisingly little about wild primate parasites, even though this constitutes the first step towards a more comprehensive understanding of parasite transmission processes. Here, we characterise the gastrointestinal helminth parasite assemblages of a community of Bornean primates living along the Kinabatangan floodplain in Sabah (Malaysian Borneo), including two species endemic to the island. Through parasitological analyses, and by using several measures of parasite infection as proxies for parasite diversity and distribution, we show that (i) most parasite taxonomic groups are not limited to a single host, suggesting a greater flexibility for habitat disturbance, (ii) parasite infracommunities of nocturnal primates differ from their diurnal counterparts, reflecting both phylogenetic and ecological constraints, and (iii) soil-transmitted helminths such as whipworm, threadworm and nodule worm are widespread across the primate community. This study also provides new parasite records for southern pig-tailed macaques (Macaca nemestrina), silvered langurs (Trachypithecus cristatus) and Western tarsiers (Cephalopachus bancanus) in the wild, while adding to the limited records for the other primate species in the community. Given the information gap regarding primate-parasite associations in the region, the information presented here should prove relevant for future studies of parasite biodiversity and infectious disease ecology in Asia and elsewhere.
    Matched MeSH terms: Biodiversity
  7. Flury JM, Haas A, Brown RM, Das I, Pui YM, Boon-Hee K, et al.
    Mol Phylogenet Evol, 2021 10;163:107210.
    PMID: 34029720 DOI: 10.1016/j.ympev.2021.107210
    One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated species richness, which coincide geographically with increased anthropogenic environmental pressures - the world's so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance criterion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous forms probably has been underestimated. The comparison with results of other anuran groups leads to the assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and nearby islands which, together with our temporal framework, suggests that lineage diversification centered on the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could represent an exceptional case for future studies of geographical structure and diversification in a widespread anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace's Line). Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition.
    Matched MeSH terms: Biodiversity*
  8. Zainal Abidin DH, Mohd Nor SA, Lavoué S, A Rahim M, Jamaludin NA, Mohammed Akib NA
    Sci Rep, 2021 Sep 07;11(1):17800.
    PMID: 34493747 DOI: 10.1038/s41598-021-97324-1
    The Merbok Estuary comprises one of the largest remaining mangrove forests in Peninsular Malaysia. Its value is significant as it provides important services to local and global communities. It also offers a unique opportunity to study the structure and functioning of mangrove ecosystems. However, its biodiversity is still partially inventoried, limiting its research value. A recent checklist based on morphological examination, reported 138 fish species residing, frequenting or subject to entering the Merbok Estuary. In this work, we reassessed the fish diversity of the Merbok Estuary by DNA barcoding 350 specimens assignable to 134 species initially identified based on morphology. Our results consistently revealed the presence of 139 Molecular Operational Taxonomic Units (MOTUs). 123 of them are congruent with morphology-based species delimitation (one species = one MOTU). In two cases, two morphological species share the same MOTU (two species = one MOTU), while we unveiled cryptic diversity (i.e. COI-based genetic variability > 2%) within seven other species (one species = two MOTUs), calling for further taxonomic investigations. This study provides a comprehensive core-list of fish taxa in Merbok Estuary, demonstrating the advantages of combining morphological and molecular evidence to describe diverse but still poorly studied tropical fish communities. It also delivers a large DNA reference collection for brackish fishes occurring in this region which will facilitate further biodiversity-oriented research studies and management activities.
    Matched MeSH terms: Biodiversity
  9. Soo CL, Nyanti L, Idris NE, Ling TY, Sim SF, Grinang J, et al.
    Sci Rep, 2021 Aug 19;11(1):16922.
    PMID: 34413385 DOI: 10.1038/s41598-021-96253-3
    Knowledge of the fundamental aspects of ecology such as the patterns of fish species distribution and biodiversity in the forest streams is the first and basic step to develop effective conservation strategies. Yet, studies on altitudinal changes of fish composition and assemblages in Bornean forest streams are scarce despite being one of the hotspots of biodiversity conservation. Hence, surveys on freshwater fish composition along the altitudinal gradients of the Baleh River Basin in Sarawak, Borneo were conducted from April 2014 to August 2015. The Baleh River Basin was divided into seven altitudinal groups with a total of 72 stations. Group elevation ranged from 53 to 269 m above sea level. The fish samples and environmental parameters were taken concurrently during samplings. A total of 3565 specimens belonging to six orders, 14 families, and 76 species were found in the present study. The most dominant family in the Baleh River Basin was Cyprinidae (74.4%), followed by Gastromyzontidae (16.2%) while the most dominant species was Tor tambra (12.9%), followed by Lobocheilos ovalis (12.3%). Fish abundance significantly higher at high altitude sites than those at low altitude sites except for Mengiong River which has the lowest fish abundance despite with high elevation. Species richness was found significantly lower in midstream segment. Noticeable altitudinal gradient of fish assemblages was observed along the Baleh River except a discontinuity at the midstream segment which is attributable to the poorer quality inflow from the Mengiong River coupled with the meandering feature of the segment. Fish abundance was significantly and positively correlated with elevation, water pH and conductivity while negatively correlated with turbidity. Anthropogenic activities in the Baleh River Basin had altered the environmental variables thus disrupted the altitudinal gradient of fish assemblages. This phenomenon is apparent when the Canonical Correspondence Analysis (CCA) revealed that the first axis (CCA1) explained 42.5% of the variation and has positive loading on dissolved oxygen (DO) and negative loading on water conductivity; whereas CCA2 explained 37.5% of the variation and positively loaded on elevation, water pH, and DO. The results demonstrated that Gastromyzon fasciatus preferred more oxygenated water than Protomyzon sp., G. sp 1, and G. punctulatus although they are all from Gastromyzontidae family that inhabiting high altitude sites. Barbonymus schwanenfeldii was also found most abundant with elevated dissolved oxygen value. On the other hand, Rasbora volzii and R. hosii inhabiting lower altitude sites with less oxygenated and more acidic water.
    Matched MeSH terms: Biodiversity*
  10. Sun ZJ, Zhu W, Zhu WB, Zhao CL, Liao CL, Zou B, et al.
    Zool Res, 2021 Jul 18;42(4):412-416.
    PMID: 34075734 DOI: 10.24272/j.issn.2095-8137.2020.341
    Functional diversity is an integrative approach to better understand biodiversity across space and time. In the present study, we investigated the spatiotemporal patterns (i.e., elevation and season) and environmental determinants of anuran functional diversity on Tianping Mountain, northwest Hunan, China. Specifically, 10 transects were established from low (300 m a.s.l.) to high (1 492 m a.s.l.) elevations, and anuran communities were sampled in spring, early summer, midsummer, and autumn in 2017. Four functional diversity indices were computed for each transect in each season using ecomorphological functional traits. Our results demonstrated that these indices had contrasting responses to increasing elevations. However, they did not differ significantly among seasons in terms of temporal patterns. Interestingly, the unique spatiotemporal functional diversity patterns were impacted by distinct environmental variables, such as leaf litter cover, water temperature, number of trees, and water conductivity.
    Matched MeSH terms: Biodiversity*
  11. Hildebrandt TB, Hermes R, Goeritz F, Appeltant R, Colleoni S, de Mori B, et al.
    Theriogenology, 2021 Jul 15;169:76-88.
    PMID: 33940218 DOI: 10.1016/j.theriogenology.2021.04.006
    The ongoing mass extinction of animal species at an unprecedented rate is largely caused by human activities. Progressive habitat destruction and fragmentation is resulting in accelerated loss of biodiversity on a global scale. Over decades, captive breeding programs of non-domestic species were characterized by efforts to optimize species-specific husbandry, to increase studbook-based animal exchange, and to improve enclosure designs. To counter the ongoing dramatic loss of biodiversity, new approaches are warranted. Recently, new ideas, particularly the application of assisted reproduction technologies (ART), have been incorporated into classical zoo breeding programs. These technologies include semen and oocyte collection, artificial insemination, and in-vitro embryo generation. More futuristic ideas of advanced ART (aART) implement recent advances in biotechnology and stem-cell related approaches such as cloning, inner cell mass transfer (ICM), and the stem-cell-associated techniques (SCAT) for the generation of gametes and ultimately embryos of highly endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni) of which only two female individuals are left. Both, ART and aART greatly depend on and benefit from the rapidly evolving cryopreservation techniques and biobanking not only of genetic, but also of viable cellular materials suitable for the generation of induced pluripotent stem cells (iPSC). The availability of cryopreserved materials bridges gaps in time and space, thereby optimizing the available genetic variability and enhancing the chance to restore viable populations.
    Matched MeSH terms: Biodiversity
  12. Lam SS, Foong SY, Lee BHK, Low F, Alstrup AKO, Ok YS, et al.
    Sci Total Environ, 2021 Jul 01;776:146003.
    PMID: 33647650 DOI: 10.1016/j.scitotenv.2021.146003
    Global warming is reducing the Arctic sea-ice and causing energetic stress to marine key predatory species such as polar bears and narwhals contributing to the ongoing pollution already threatening the biodiversity and indigenous people of the vulnerable region. Now, the opening of the Arctic gateway and in particular the increase in shipping activities causes further stress to marine mammals in the region. These shipping activities are foreseen to happen in the Northwest and Northeast Passage, Northern Sea Route and Transpolar Sea Route in the Arctic Ocean, which could be yet another step towards a crucial tipping point destabilizing global climate, including weathering systems and sea-level rise. This calls for international governance through the establishment of Arctic International National Parks and more Marine Protected Areas through the Arctic Council and UN's Law of the Sea to ensure sustainable use of the Arctic Ocean and adjacent waters.
    Matched MeSH terms: Biodiversity
  13. Drinkwater R, Jucker T, Potter JHT, Swinfield T, Coomes DA, Slade EM, et al.
    Mol Ecol, 2021 07;30(13):3299-3312.
    PMID: 33171014 DOI: 10.1111/mec.15724
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.
    Matched MeSH terms: Biodiversity
  14. Mateos-Molina D, Ben Lamine E, Antonopoulou M, Burt JA, Das HS, Javed S, et al.
    Mar Pollut Bull, 2021 Jun;167:112319.
    PMID: 33845352 DOI: 10.1016/j.marpolbul.2021.112319
    The United Arab Emirates (UAE) host valuable coastal and marine biodiversity that is subjected to multiple pressures under extreme conditions. To mitigate impacts on marine ecosystems, the UAE protects almost 12% of its Exclusive Economic Zone. This study mapped and validated the distribution of key coastal and marine habitats, species and critical areas for their life cycle in the Gulf area of the UAE. We identified gaps in the current protection of these ecological features and assessed the quality of the data used. The overall dataset showed good data quality, but deficiencies in information for the coastline of the north-western emirates. The existing protected areas are inadequate to safeguard key ecological features such as mangroves and coastal lagoons. This study offers a solid basis to understand the spatial distribution and protection of marine biodiversity in the UAE. This information should be considered for implementing effective conservation planning and ecosystem-based management.
    Matched MeSH terms: Biodiversity
  15. O'Bryan CJ, Garnett ST, Fa JE, Leiper I, Rehbein JA, Fernández-Llamazares Á, et al.
    Conserv Biol, 2021 06;35(3):1002-1008.
    PMID: 32852067 DOI: 10.1111/cobi.13620
    Indigenous Peoples' lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition on these lands globally remains largely unknown. We conducted the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands based on data on area of habitat (AOH) for 4460 mammal species assessed by the International Union for Conservation of Nature. We overlaid each species' AOH on a current map of Indigenous lands and found that 2695 species (60% of assessed mammals) had ≥10% of their ranges on Indigenous Peoples' lands and 1009 species (23%) had >50% of their ranges on these lands. For threatened species, 473 (47%) occurred on Indigenous lands with 26% having >50% of their habitat on these lands. We also found that 935 mammal species (131 categorized as threatened) had ≥ 10% of their range on Indigenous Peoples' lands that had low human pressure. Our results show how important Indigenous Peoples' lands are to the successful implementation of conservation and sustainable development agendas worldwide.
    Matched MeSH terms: Biodiversity
  16. Srisuka W, Sulin C, Aupalee K, Phankaen T, Taai K, Thongsahuan S, et al.
    Insects, 2021 May 31;12(6).
    PMID: 34072677 DOI: 10.3390/insects12060504
    Black flies form a group of small blood-sucking insects of medical and veterinary importance. This study aimed to investigate the community structure, biodiversity and spatial and temporal distribution of adult black flies in tropical rain forests, by using malaise traps in Doi Inthanon National Park, northern Thailand. Malaise traps were placed along six elevational gradients (400 m to 2500 m, above sea level) at Doi Inthanon National Park, Chiang Mai province, from December 2013 to November 2014. A total of 9406 adult female black flies belonging to five subgenera-Daviesellum (2%), Gomphostilbia (23%), Montisimulium (11%), Nevermannia (16%) and Simulium (48%)-were collected. Among 44 taxa found, S. tenebrosum complex had the highest relative abundance (11.1%), followed by the S. asakoae species-group (9.6%), the S. striatum species-group (7.7%), S. inthanonense (6.6%), S. doipuiense complex (6.4%), S. chomthongense complex (5.3%), S. chumpornense (5.1%) and S. nigrogilvum (4.1%). Two human-biting species-S. nigrogilvum and species in the S. asakoae species-group-were found in all of the collection sites with 100% species occurrence. Species richness was highest at mid elevation (1400 m), which is represented by 19 black fly species. The peak and lowest seasonal abundance was observed in the rainy and hot season, respectively. Seasonal species richness was highest in the cold season, except for that from elevation sites at 700 m, 1700 m and 2500 m. This study revealed that the malaise trap is effective in providing important data for further monitoring of the effects of environmental changes and conservation planning on the biodiversity of black flies in Doi Inthanon National Park.
    Matched MeSH terms: Biodiversity
  17. Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, et al.
    Nat Commun, 2021 May 25;12(1):3137.
    PMID: 34035260 DOI: 10.1038/s41467-021-23236-3
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
    Matched MeSH terms: Biodiversity*
  18. Sari E, Mahira KF, Patel DN, Chua LS, Pratami DK, Sahlan M
    Heliyon, 2021 May;7(5):e06912.
    PMID: 34013079 DOI: 10.1016/j.heliyon.2021.e06912
    Royal jellies (RJs) possess moisturizing, emulsifying, and stabilizing properties, and several pharmacological activities have also been found to be present, which make them an ideal component for cosmetic and skin care products. However, despite the abundant efficacies, there is a lack of studies that explore the chemical composition of RJ using metabolome analysis. Furthermore, an evaluation of the chemical composition of Indonesian RJs collected from different regions has yet to be carried out. Therefore, the main objective of this study was to identify any differences in the chemical composition of such RJs. Chemical profiling was also carried out to enable more targeted utilization based on the actual compositions. Chemical profiling is also important given the rich Indonesian biodiversity and the high dependence of the RJ compositions on the botanical source. In this research, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used as part of an untargeted metabolomics approach. From the chemical profiling, >30 compounds were identified across four RJ samples. The major constituents of the samples were found to be oligosaccharides, fatty acids, and adenosine monophosphate derivatives. Meanwhile, sucrose and planteose were found to be highest in the samples from Banjarnegara and Kediri, whereas dimethyloctanoic acid was found to be unique to the sample from Banjarnegara. It was also discovered that the RJs from Demak and Tuban contained more organic fatty acids and oligosaccharides than the other samples. Although the sample from Demak demonstrated good potential for use in the cosmetic, skin care, and bio-supplement industries, the higher abundance of fatty acids and oligosaccharides in the sample from Tuban indicated that it is perhaps the most suitable RJ for use in this field.
    Matched MeSH terms: Biodiversity
  19. Shodipo MO, Sikkel PC, Smit NJ, Hadfield KA
    Int J Parasitol Parasites Wildl, 2021 Apr;14:355-367.
    PMID: 33898237 DOI: 10.1016/j.ijppaw.2021.03.004
    Due to their unusual life cycle that includes parasitic larval and free living adult stages, gnathiid isopods are typically overlooked in biodiversity surveys, even those that focus on parasites. While the Philippines sits within the region of highest marine biodiversity in the world, the coral triangle, no gnathiid species have been identified or described from that region. Here we present the first records of two gnathiid species collected from the Visayas, central Philippines: Gnathia malaysiensis Müller, 1993, previously described from Malaysia, and G. camuripenis Tanaka, 2004, previously described from southern Japan. This paper provides detailed morphological redescriptions, drawings and scanning electron microscope images as well as the first molecular characterisation of both species, Furthermore, a summary of the Central-Indo Pacific Gnathia species is provided.
    Matched MeSH terms: Biodiversity
  20. Che Azmi NA, Mohd Apandi N, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Apr;28(14):16948-16961.
    PMID: 33641100 DOI: 10.1007/s11356-021-12886-x
    Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.
    Matched MeSH terms: Biodiversity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links