MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.
RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.
CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.
METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.
RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).
CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).
MATERIALS AND METHODS: Patients diagnosed with adenocarcinoma of the lung between 2010 and 2014 were tested for EGFR mutations. Of these, 92 cases were identified as EGFR wild type and suitable candidates for ALK testing utilising immunohistochemistry and the rabbit monoclonal antibody D5F3. The reliability of the IHC was confirmed by validating the results against those achieved by fluorescence in situ hybridisation (FISH) to detect ALK gene rearrangements.
RESULTS: Twelve (13%) cases were positive for ALK expression using immunohistochemistry. Of the 18 evaluable cases tested by FISH, there was 100% agreement with respect to ALK rearrangement/ALK expression between the assays, with 11 cases ALK negative and 7 cases ALK positive by both assays. ALK tumour expression was significantly more common in female compared to male patients (29.6% vs. 6.2%, P
EXPERIMENTAL DESIGN: Tumor tissue EGFRm status was determined at screening using the central cobas tissue test or a local tissue test. Baseline circulating tumor (ct)DNA EGFRm status was retrospectively determined with the central cobas plasma test.
RESULTS: Of 994 patients screened, 556 were randomized (289 and 267 with central and local EGFR test results, respectively) and 438 failed screening. Of those randomized from local EGFR test results, 217 patients had available central test results; 211/217 (97%) were retrospectively confirmed EGFRm positive by central cobas tissue test. Using reference central cobas tissue test results, positive percent agreements with cobas plasma test results for Ex19del and L858R detection were 79% [95% confidence interval (CI), 74-84] and 68% (95% CI, 61-75), respectively. Progression-free survival (PFS) superiority with osimertinib over comparator EGFR-TKI remained consistent irrespective of randomization route (central/local EGFRm-positive tissue test). In both treatment arms, PFS was prolonged in plasma ctDNA EGFRm-negative (23.5 and 15.0 months) versus -positive patients (15.2 and 9.7 months).
CONCLUSIONS: Our results support utility of cobas tissue and plasma testing to aid selection of patients with EGFRm advanced NSCLC for first-line osimertinib treatment. Lack of EGFRm detection in plasma was associated with prolonged PFS versus patients plasma EGFRm positive, potentially due to patients having lower tumor burden.