Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Singh S, Prakash A, Kaur S, Ming LC, Mani V, Majeed AB
    Environ Toxicol, 2016 Aug;31(8):1017-26.
    PMID: 25864908 DOI: 10.1002/tox.22111
    Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016.
    Matched MeSH terms: Cell Death/drug effects
  2. Setyawati MI, Kutty RV, Leong DT
    Small, 2016 Oct;12(40):5601-5611.
    PMID: 27571230 DOI: 10.1002/smll.201601669
    Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
    Matched MeSH terms: Cell Death/drug effects
  3. Razali FN, Sinniah SK, Hussin H, Zainal Abidin N, Shuib AS
    Int J Biol Macromol, 2016 Nov;92:185-193.
    PMID: 27365117 DOI: 10.1016/j.ijbiomac.2016.06.079
    A polysaccharide fraction from Solanum nigrum, SN-ppF3 was shown previously to have an immunomodulatory activity where it could possibly be used to enhance the host immune response in fighting cancer. The non-toxic SN-ppF3 was fed orally to breast tumor bearing-mice with concentrations of 250 and 500mg/kg for 10days. During the treatment period, size of the tumor and weight of the mice were monitored. At the end of the treatment, blood, tumor, spleen and thymus were harvested for physiological and immunological analyses. After the treatment, the tumor volume and tumor weight were significantly inhibited by 65% and 40%, respectively. Based on the histological observation, the treatment of SN-ppF3 resulted in the disruption of tumor cells morphology. The increase in infiltrating T cells, NK cells and macrophages were observed in tumor tissues of the treated mice, which partly explained the higher apoptosis tumor cells observed in the treated mice. Moreover, the level of TNF-α, IFN-γ and IL-4 were elevated, while the level of IL-6 was decreased significantly, in serum of the treated mice. These results suggested that tumor suppression mechanisms observed in SN-ppF3-treated mice were most probably due through enhancing the host immune response.
    Matched MeSH terms: Cell Death/drug effects
  4. Kalra J, Kumar P, Majeed AB, Prakash A
    Pharmacol. Biochem. Behav., 2016 Jul-Aug;146-147:1-12.
    PMID: 27106205 DOI: 10.1016/j.pbb.2016.04.002
    Several lines of evidence indicate that beta amyloid (β-A) production, neurofibrillary tangles and neuroinflammation are interrelated in the pathogenesis of Alzheimer's disease (AD). AD is associated with enhanced β-A production and accumulation resulting in neuroinflammation probably via activation of lipoxygenase (LOX) and cyclooxygenase (COX) pathways. Therefore, the present study was designed to investigate the role of LOX and COX inhibitors (zafirlukast and valdecoxib) in amyloidogenesis in β-A1-42 oligomer induced experimental AD in rats. The behavioral activities were assessed using actophotometer, novel object recognition test (ORT), Morris water maze (MWM) followed by biochemical assessments, determination of proinflammatory cytokines and mediators (TNF-α, IL-1β and PGE2), β-A1-42 levels and histopathological analysis. ICV administration of β-A1-42 oligomer produced significant impairment in memory consolidation. In addition to this significant increase in mito-oxidative stress, neuroinflammatory markers, acetylcholinesterase (AChE) toxicity, β-A1-42 level, neuronal cell death and neuroinflammation are more profound in β-A1-42 oligomer treated AD rats. Administration of zafirlukast (15 and 30mg/kg), and valdecoxib (5 and 10mg/kg) significantly improved the behavioral performances and showed significant reversal of mito-oxidative damage declining the neuroinflammation in β-A1-42 oligomer treated rats. Furthermore, more profound effects were observed at the sub-therapeutic dose combination of zafirlukast (15mg/kg) and valdecoxib (5mg/kg). The results of the present study indicate that protective effects of zafirlukast and valdecoxib are achieved through the blockade of release of LOX and COX metabolites therefore, representing a new therapeutic target for treating AD and other neurodegenerative disorders.
    Matched MeSH terms: Cell Death/drug effects
  5. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S
    Int J Nanomedicine, 2016;11:3417-34.
    PMID: 27555765 DOI: 10.2147/IJN.S112045
    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
    Matched MeSH terms: Cell Death/drug effects
  6. Tan XW, Bhave M, Fong AY, Matsuura E, Kobayashi K, Shen LH, et al.
    Oxid Med Cell Longev, 2016;2016:6943053.
    PMID: 27239253 DOI: 10.1155/2016/6943053
    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: "BJLN") and a commercial rice variety, "MR219," on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT.
    Matched MeSH terms: Cell Death/drug effects
  7. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Cell Death/drug effects
  8. Chung FF, Tan PF, Raja VJ, Tan BS, Lim KH, Kam TS, et al.
    Sci Rep, 2017 02 15;7:42504.
    PMID: 28198434 DOI: 10.1038/srep42504
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization.
    Matched MeSH terms: Cell Death/drug effects*
  9. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgcell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.
    Matched MeSH terms: Cell Death/drug effects
  10. Navanesan S, Abdul Wahab N, Manickam S, Cheow YL, Sim KS
    Chem Biol Interact, 2017 Aug 01;273:37-47.
    PMID: 28578903 DOI: 10.1016/j.cbi.2017.05.022
    The active isolate of LF1 in Leptospermum javanicum was further looked into its capabilities in provoking an apoptotic reaction and suppressing the metastasis process in treated non-small lung cancer cells. LF1 underwent isolation and purification to yield a white powder which was identified as Betulinic acid (BA) via NMR, LCMS and IR spectroscopy. The isolate, BA, which produced an encouraging cytotoxic effect against non-small lung cancer cells (A549 and NCI-H1299) through the MTT assay, was further assessed with TUNEL, Sub-G1 population quantification, acridine orange/ethidium bromide staining as well as activated caspase-3 detection. The results pointed towards the induction of apoptosis as a result of increasing doses of BA, regardless of the p53 status in both cell lines. Treatment with BA also prevented an effective attachment of the invasive A549 cells onto a new culture surface in addition to diminishing the migratory potential of treated cells across a porous membrane. Further investigation through the ELISA detection and gelatin zymography showed an adverse effect to production of matrix metalloproteinase-2 (MMP-2) while the levels of matrix metalloproteinase-9 (MMP-9) were not negatively affected. The findings from this study validate the potential of L. javanicum as a potential anti-cancer treatment as stated in our previous study. The isolate, BA not only showed a capacity in inducing apoptotic cell death in non-small lung cancer cells, but managed to distort the ability of the cancer cells in effectively undergoing the metastasis process.
    Matched MeSH terms: Cell Death/drug effects
  11. Tiash S, Kamaruzman NIB, Chowdhury EH
    Drug Deliv, 2017 Nov;24(1):1721-1730.
    PMID: 29119846 DOI: 10.1080/10717544.2017.1396385
    Cancer cells lose their control on cell cycle by numerous genetic and epigenetic alterations. In a tumor, these cells highly express growth factor receptors (GFRs), eliciting growth, and cell division. Among the GFRs, epidermal growth factor receptor-1 (EGFR1) (Her1/ERBB1) and epidermal growth factor receptor-2 (EGFR2) (Her2/ERBB2) from epidermal growth factor (EGF) family and insulin-like growth factor-1 receptor (IGF1R) are highly expressed on breast cancer cells, thus contributing to the aggressive growth and invasiveness, have been focused in this study. Moreover, overexpression of these receptors is related to suppression of cell death and conferring resistance against the classical drugs used to treat cancer nowadays. Therefore, silencing of these GFRs-encoding genes by using selective small interfering RNAs (siRNAs) could be a powerful approach to treat breast cancer. The inorganic pH sensitive carbonate apatite nanoparticles (NPs) were used as a nano-carrier to deliver siRNA(s) against single or multiple GFR genes in breast cancer cells as well as in a mouse model of breast carcinoma. Silencing of egfr1 and erbb2 simultaneously led to a reduction in cell viability with an increase in cell death signal in the cancer cells and regression of tumor growth in vivo.
    Matched MeSH terms: Cell Death/drug effects
  12. Liow KY, Chow SC
    Naunyn Schmiedebergs Arch Pharmacol, 2018 Jan;391(1):71-82.
    PMID: 29085973 DOI: 10.1007/s00210-017-1436-6
    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
    Matched MeSH terms: Cell Death/drug effects
  13. Colley HE, Said Z, Santocildes-Romero ME, Baker SR, D'Apice K, Hansen J, et al.
    Biomaterials, 2018 09;178:134-146.
    PMID: 29929183 DOI: 10.1016/j.biomaterials.2018.06.009
    Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are chronic inflammatory conditions often characterised by erosive and/or painful oral lesions that have a considerable impact on quality of life. Current treatment often necessitates the use of steroids in the form of mouthwashes, creams or ointments, but these are often ineffective due to inadequate drug contact times with the lesion. Here we evaluate the performance of novel mucoadhesive patches for targeted drug delivery. Electrospun polymeric mucoadhesive patches were produced and characterised for their physical properties and cytotoxicity before evaluation of residence time and acceptability in a human feasibility study. Clobetasol-17-propionate incorporated into the patches was released in a sustained manner in both tissue-engineered oral mucosa and ex vivo porcine mucosa. Clobetasol-17 propionate-loaded patches were further evaluated for residence time and drug release in an in vivo animal model and demonstrated prolonged adhesion and drug release at therapeutic-relevant doses and time points. These data show that electrospun patches are adherent to mucosal tissue without causing tissue damage, and can be successfully loaded with and release clinically active drugs. These patches hold great promise for the treatment of oral conditions such as OLP and RAS, and potentially many other oral lesions.
    Matched MeSH terms: Cell Death/drug effects
  14. Kar Wei L, Zamakshshari NH, Ee GCL, Mah SH, Mohd Nor SM
    Nat Prod Res, 2018 Sep;32(18):2147-2151.
    PMID: 28826239 DOI: 10.1080/14786419.2017.1367781
    Two naturally occurring xanthones, ananixanthone (1) and β-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 μg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 μg/mL.
    Matched MeSH terms: Cell Death/drug effects
  15. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Cell Death/drug effects
  16. Subramaniam M, Liew SK, In L, Awang K, Ahmed N, Nagoor NH
    Drug Des Devel Ther, 2018;12:1053-1063.
    PMID: 29750018 DOI: 10.2147/DDDT.S141925
    Background: Drug combination therapy to treat cancer is a strategic approach to increase successful treatment rate. Optimizing combination regimens is vital to increase therapeutic efficacy with minimal side effects.

    Materials and methods: In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1'S-1'-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP) and cisplatin (CDDP) against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB) and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression.

    Results: All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation.

    Conclusion: Double and triple combination regimens that target induction of the same death mechanism with reduced dosage of each drug could potentially be clinically beneficial in reducing dose-related toxicities.

    Matched MeSH terms: Cell Death/drug effects
  17. Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Zuhainis SW, Navaderi M, et al.
    Int J Nanomedicine, 2018;13:5097-5112.
    PMID: 30254435 DOI: 10.2147/IJN.S164573
    Background: In recent years, bacterial nanocellulose (BNC) based nanocomposites have been developed to promote healing property and antibacterial activity of BNC wound dressing. Molecular study can help to better understanding about interaction of genes and pathways involved in healing progression.

    Objectives: The aim of this study was to prepare bacterial nanocellulose/silver (BNC/Ag) nanocomposite films as ecofriendly wound dressing in order to assess their physical, cytotoxicity and antimicrobial properties. The in vitro molecular study was performed to evaluate expression of genes involved in healing of wounds after treatment with BNC/Ag biofilms.

    Study design materials and methods: Silver nanoparticles were formed by using Citrullus colocynthis extract within new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Besides, swelling property and Ag release profile of the nanocomposites were studied. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was studied. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.

    Results: Spherical silver nanoparticles with particle size ranging from 20 to 50 nm were synthesized and impregnated within the structure of BNC. The resulting nanocomposites showed significant antibacterial activities with inhibition zones ranging from 7±0.25 to 16.24±0.09 mm against skin pathogenic bacteria. Moreover, it was compatible with human fibroblast cells (HDF) and could promote in vitro wound healing after 48h. Based on bioinformatics databases, the genes of TGF-β1, MMP2, MMP9, CTNNB1, Wnt4, hsa-miR-29b-3p and hsa-miR-29c-3p played important role in wound healing. The nanocomposites had an effect in expression of the genes in healing. Thus, the BNC/Ag nanocomposite can be used to heal wound in a short period and simple manner.

    Conclusion: This eco-friendly nanocomposite with excellent antibacterial activities and healing property confirming its utility as potential wound dressings.

    Matched MeSH terms: Cell Death/drug effects
  18. Syed Azhar SNA, Ashari SE, Salim N
    Int J Nanomedicine, 2018;13:6465-6479.
    PMID: 30410332 DOI: 10.2147/IJN.S171532
    Introduction: Kojic monooleate (KMO) is an ester derived from a fungal metabolite of kojic acid with monounsaturated fatty acid, oleic acid, which contains tyrosinase inhibitor to treat skin disorders such as hyperpigmentation. In this study, KMO was formulated in an oil-in-water nanoemulsion as a carrier for better penetration into the skin.

    Methods: The nanoemulsion was prepared by using high and low energy emulsification technique. D-optimal mixture experimental design was generated as a tool for optimizing the composition of nanoemulsions suitable for topical delivery systems. Effects of formulation variables including KMO (2.0%-10.0% w/w), mixture of castor oil (CO):lemon essential oil (LO; 9:1) (1.0%-5.0% w/w), Tween 80 (1.0%-4.0% w/w), xanthan gum (0.5%-1.5% w/w), and deionized water (78.8%-94.8% w/w), on droplet size as a response were determined.

    Results: Analysis of variance showed that the fitness of the quadratic polynomial fits the experimental data with F-value (2,479.87), a low P-value (P<0.0001), and a nonsignificant lack of fit. The optimized formulation of KMO-enriched nanoemulsion with desirable criteria was KMO (10.0% w/w), Tween 80 (3.19% w/w), CO:LO (3.74% w/w), xanthan gum (0.70% w/w), and deionized water (81.68% w/w). This optimum formulation showed good agreement between the actual droplet size (110.01 nm) and the predicted droplet size (111.73 nm) with a residual standard error <2.0%. The optimized formulation with pH values (6.28) showed high conductivity (1,492.00 µScm-1) and remained stable under accelerated stability study during storage at 4°C, 25°C, and 45°C for 90 days, centrifugal force as well as freeze-thaw cycles. Rheology measurement justified that the optimized formulation was more elastic (shear thinning and pseudo-plastic properties) rather than demonstrating viscous characteristics. In vitro cytotoxicity of the optimized KMO formulation and KMO oil showed that IC50 (50% inhibition of cell viability) value was >100 µg/mL.

    Conclusion: The survival rate of 3T3 cell on KMO formulation (54.76%) was found to be higher compared to KMO oil (53.37%) without any toxicity sign. This proved that the KMO formulation was less toxic and can be applied for cosmeceutical applications.

    Matched MeSH terms: Cell Death/drug effects
  19. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    Matched MeSH terms: Cell Death/drug effects
  20. Gurunanselage Don RAS, Yap MKK
    Biomed Pharmacother, 2019 Feb;110:918-929.
    PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023
    Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Cell Death/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links