Displaying publications 41 - 60 of 584 in total

Abstract:
Sort:
  1. Chappel L, Wong LC, Leong CO, Mai CW, Meikle IT, Stanforth SP, et al.
    Bioorg Med Chem Lett, 2020 02 15;30(4):126910.
    PMID: 31882300 DOI: 10.1016/j.bmcl.2019.126910
    Six N-nitroaryl-2-amino-1,3-dichloropropane derivatives have been prepared and evaluated against 18 cancer cell lines and two non-cancerous cell lines. Analysis of cell viability data and IC50 values indicated that the presence of a trifluoromethyl group in the nitroaryl moiety is an important structural feature associated with the compounds' cytotoxicities.
    Matched MeSH terms: Cell Survival/drug effects
  2. Kadir NH, David R, Rossiter JT, Gooderham NJ
    Toxicology, 2015 Aug 6;334:59-71.
    PMID: 26066520 DOI: 10.1016/j.tox.2015.06.002
    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.
    Matched MeSH terms: Cell Survival/drug effects
  3. Abdul Hamid Z, Lin Lin WH, Abdalla BJ, Bee Yuen O, Latif ES, Mohamed J, et al.
    ScientificWorldJournal, 2014;2014:258192.
    PMID: 25405216 DOI: 10.1155/2014/258192
    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.
    Matched MeSH terms: Cell Survival/drug effects
  4. Chew MT, Bradley DA, Suzuki M, Matsufuji N, Murakami T, Jones B, et al.
    J Radiat Res, 2019 Mar 01;60(2):178-188.
    PMID: 30624699 DOI: 10.1093/jrr/rry099
    The effects of the charged ion species 4He, 12C and 20Ne on glioblastoma multiforme (GBM) T98G, U87 and LN18 cell lines were compared with the effects of 200 kVp X-rays (1.7 keV/μm). These cell lines have different genetic profiles. Individual GBM relative biological effectiveness (RBE) was estimated in two ways: the RBE10 at 10% survival fraction and the RBE2Gy after 2 Gy doses. The linear quadratic model radiosensitivity parameters α and β and the α/β ratio of each ion type were determined as a function of LET. Mono-energetic 4He, 12C and 20Ne ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Sciences in Chiba, Japan. Colony-formation assays were used to evaluate the survival fractions. The LET of the various ions used ranged from 2.3 to 100 keV/μm (covering the depth-dose plateau region to clinically relevant LET at the Bragg peak). For U87 and LN18, the RBE10 increased with LET and peaked at 85 keV/μm, whereas T98G peaked at 100 keV/μm. All three GBM α parameters peaked at 100 keV/μm. There is a statistically significant difference between the three GBM RBE10 values, except at 100 keV/μm (P < 0.01), and a statistically significant difference between the α values of the GBM cell lines, except at 85 and 100 keV/μm. The biological response varied depending on the GBM cell lines and on the ions used.
    Matched MeSH terms: Cell Survival/drug effects
  5. Chang VS, Okechukwu PN, Teo SS
    Biomed Pharmacother, 2017 Mar;87:296-301.
    PMID: 28063411 DOI: 10.1016/j.biopha.2016.12.092
    The edible red seaweed (Kappaphycus alvarezii) is one of the algae species which was found to be rich in nutrients and nutraceutical. Hence, K. alvarezii may have the ability to suppress cancer through its antiproliferative properties. The aim of this study was to investigate the potential compounds of K. alvarezii, cytotoxicity properties of K. alvarezii extract on breast cancer cell line (MCF-7), investigated toxicity effect of high dosage K. alvarezii extract in rats and determined the effect of K. alvarezii on 7, 12-dimethylbenz[a]anthracene (DMBA) mammary carcinogenesis in rats. The method of LCMS/MS and MTT assay were used. For animal study, sub-chronic toxicity method was used, the rats were supplemented with 2000mg/kg body weight daily of K. alvarezii crude extracts by oral gavage. For the anticancer effect of K. alvarezii crude extracts, this study consisted of three groups of the experimental, untreated and normal group of rats. The experimental and untreated groups of rats were induced with mammary tumour with DMBA. The experimental group of rats was given with K. alvarezii crude extracts orally. The results were being used to compare with the untreated group of rats and normal group of rats. All the rats were fed with standard diet and water ad libitum. Mortality, behavior changes and tumour sizes were observed specifically. The differences between the three groups of rats were evaluated by using the ANOVA test. By using LCMS/MS method, six unknown compounds were analysed. K. alvarezii crude extract reduced the cell viability of MCF-7 from 84.91% to 0.81% and the IC50 value is 4.1±0.69mg/mL. For sub-chronic and heavy metal toxicity studies, no significant difference was found in haematological and biochemical values of the control group and experimental group. The growth rate of tumours in the untreated group of rats was found significantly higher than the experimental group of rats. Besides that, the white blood cells level in untreated group was found significantly higher than the experimental group and the normal group. In conclusion, K. alvarezii extract might able to slow down the growth rate of the tumour cells, therefore, identification of an active compound of inhibition growth rate of the tumour cells can be positively carried out in the future.
    Matched MeSH terms: Cell Survival/drug effects
  6. Lau BF, Abdullah N, Aminudin N, Lee HB, Yap KC, Sabaratnam V
    PLoS One, 2014;9(7):e102509.
    PMID: 25054862 DOI: 10.1371/journal.pone.0102509
    Previous studies on the nutritional and nutraceutical properties of Lignosus rhinocerotis focused mainly on the sclerotium; however, the supply of wild sclerotium is limited. In this investigation, the antioxidant capacity and cytotoxic effect of L. rhinocerotis cultured under different conditions of liquid fermentation (shaken and static) were compared to the sclerotium produced by solid-substrate fermentation. Aqueous methanol extracts of the mycelium (LR-MH, LR-MT) and culture broth (LR-BH, LR-BT) demonstrated either higher or comparable antioxidant capacities to the sclerotium extract (LR-SC) based on their radical scavenging abilities, reducing properties, metal chelating activities, and inhibitory effects on lipid peroxidation. All extracts exerted low cytotoxicity (IC50>200 µg/ml, 72 h) against selected mammalian cell lines. Several low-molecular-weight compounds, including sugars, fatty acids, methyl esters, sterols, amides, amino acids, phenolics, and triterpenoids, were identified using GC-MS and UHPLC-ESI-MS/MS. The presence of proteins (<40 kDa) in the extracts was confirmed by SDS-PAGE and SELDI-TOF-MS. Principal component analysis revealed that the chemical profiles of the mycelial extracts under shaken and static conditions were distinct from those of the sclerotium. Results from bioactivity evaluation and chemical profiling showed that L. rhinocerotis from liquid fermentation merits consideration as an alternative source of functional ingredients and potential substitute for the sclerotium.
    Matched MeSH terms: Cell Survival/drug effects
  7. Selvaraju TR, Khaza'ai H, Vidyadaran S, Abd Mutalib MS, Vasudevan R
    Bosn J Basic Med Sci, 2014 Nov 16;14(4):195-204.
    PMID: 25428670 DOI: 10.17305/bjbms.2014.4.91
    Tocotrienol rich fraction (TRF) is an extract of palm oil, which consists of 25% alpha tocopherol (α-TCP) and 75% tocotrienols. TRF has been shown to possess potent antioxidant, anti-inflammatory, anticancer, neuroprotection, and cholesterol lowering activities. Glutamate is the main excitatory amino acid neurotransmitter in the central nervous system of mammalian, which can be excitotoxic, and it has been suggested to play a key role in neurodegenerative disorders like Parkinson's and Alzheimer's diseases. In this present study, the effects of vitamin E (TRF and α-TCP) in protecting astrocytes against glutamate injury were elucidated. Astrocytes induced with 180 mM of glutamate lead to significant cell death. However, glutamate mediated cytotoxicity was diminished via pre and post supplementation of TRF and α-TCP. Hence, vitamin E acted as a potent antioxidant agent in recovering mitochondrial injury due to elevated oxidative stress, and enhanced better survivability upon glutamate toxicity.
    Matched MeSH terms: Cell Survival/drug effects
  8. Alhuthali HM, Bradshaw TD, Lim KH, Kam TS, Seedhouse CH
    BMC Cancer, 2020 Jul 07;20(1):629.
    PMID: 32635894 DOI: 10.1186/s12885-020-07119-2
    BACKGROUND: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells.

    METHODS: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species.

    RESULTS: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC).

    CONCLUSIONS: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action.

    Matched MeSH terms: Cell Survival/drug effects
  9. Defo Deeh PB, Watcho P, Wankeu-Nya M, Ngadjui E, Usman UZ
    Andrologia, 2019 Apr;51(3):e13216.
    PMID: 30536879 DOI: 10.1111/and.13216
    This study evaluated the effects of the methanolic extract of Guibourtia tessmannii (GT) and selenium (Se) on cell viability, intracellular calcium concentration ([Ca2+ ]i ), apoptosis and oxidative stress through transient receptor potential vanilloid 1 (TRPV1) channel activity in CCL-97 (R2C) tumour Leydig cells. The cells were divided into nine groups and treated as follows: (a)-Control, (b)-Capsazepine (CPZ, 0.1 mM, a TRPV1 channel blocker), (c)-Capsaicin (CAP, 0.01 mM, a TRPV1 channel activator), (d)-GT (500 μg/ml), (e)-GT+CPZ, (f)-GT+CAP, (g)-Se (200 nM), (h)-Se+CPZ and (i)-Se+CAP. After treatments, cell viability, [Ca2+ ]i , apoptosis, caspase 3/9, reactive oxygen species (ROS) and mitochondrial membrane depolarisation (MMD) were evaluated. The [Ca2+ ]i , apoptosis, caspase 3/9, MMD and ROS levels were significantly (p cells. These results suggest that GT and Se might be used in the management of cytotoxicity in the testes, involving TRPV1 channel activity.
    Matched MeSH terms: Cell Survival/drug effects
  10. Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MM, et al.
    J Ethnopharmacol, 2011 Sep 2;137(2):963-70.
    PMID: 21771650 DOI: 10.1016/j.jep.2011.07.010
    Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
    Matched MeSH terms: Cell Survival/drug effects
  11. Yeo CI, Ooi KK, Akim AM, Ang KP, Fairuz ZA, Halim SN, et al.
    J Inorg Biochem, 2013 Oct;127:24-38.
    PMID: 23850666 DOI: 10.1016/j.jinorgbio.2013.05.011
    The Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), compounds are significantly cytotoxic to the HT-29 cancer cell line with 1 being the most active. Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis is demonstrated and both the extrinsic and intrinsic pathways of apoptosis have been shown to occur. Compound 1 activates the p73 gene, whereas each of 2 and 3 activates the p53 gene. An additional apoptotic mechanism is exhibited by 2, that is, via the JNK/MAP pathway.
    Matched MeSH terms: Cell Survival/drug effects
  12. Ahmad AF, Heaselgrave W, Andrew PW, Kilvington S
    J. Eukaryot. Microbiol., 2013 Sep-Oct;60(5):539-43.
    PMID: 23869955 DOI: 10.1111/jeu.12062
    The free-living amoeba Balamuthia mandrillaris causes usually fatal encephalitis in humans and animals. Only limited studies have investigated the efficacy of antimicrobial agents against the organism. Assay methods were developed to assess antimicrobial efficacy against both the trophozoite and cyst stage of B. mandrillaris (ATCC 50209). Amphotericin B, ciclopirox olamine, miltefosine, natamycin, paromomycin, pentamidine isethionate, protriptyline, spiramycin, sulconazole and telithromycin had limited activity with amoebacidal levels of > 135-500 μM. However, diminazene aceturate (Berenil(®) ) was amoebacidal at 7.8 μM and 31.3-61.5 μM for trophozoites and cysts, respectively. Assays for antimicrobial testing may improve the prognosis for infection and aid in the development of primary selective culture isolation media.
    Matched MeSH terms: Cell Survival/drug effects
  13. Syam S, Abdul AB, Sukari MA, Mohan S, Abdelwahab SI, Wah TS
    Molecules, 2011 Aug 23;16(8):7155-70.
    PMID: 21862957 DOI: 10.3390/molecules16087155
    Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G(0)/G(1) peak (hypodiploid) and caused G(0)/G(1)-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.
    Matched MeSH terms: Cell Survival/drug effects
  14. Hiu JJ, Yap MKK
    Int J Biol Macromol, 2021 Aug 01;184:776-786.
    PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145
    Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
    Matched MeSH terms: Cell Survival/drug effects
  15. Yaw ACK, Chan EWL, Yap JKY, Mai CW
    J Cancer Res Clin Oncol, 2020 Sep;146(9):2219-2229.
    PMID: 32507974 DOI: 10.1007/s00432-020-03274-y
    PURPOSE: Pancreatic cancer is a lethal form of cancer that can be triggered by prolonged or acute inflammation of the pancreas. Inflammation have been shown to be regulated by a group of key protein molecules known as the inflammasomes. The NLRP3 inflammasome is the most studied inflammasome and have been strongly implicated to regulate cancer cell proliferation. Therefore, this study aimed to examine the regulation of NLRP3 inflammasome under LPS-induced inflammation and its role in modulating cell proliferation in a panel of pancreatic cancer cells.

    METHODS: The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively.

    RESULTS: LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation.

    CONCLUSION: There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.

    Matched MeSH terms: Cell Survival/drug effects
  16. Liow KY, Chow SC
    Toxicol Appl Pharmacol, 2013 Nov 1;272(3):559-67.
    PMID: 23933532 DOI: 10.1016/j.taap.2013.07.022
    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose-response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis.
    Matched MeSH terms: Cell Survival/drug effects*
  17. Awang K, Azmi MN, Aun LI, Aziz AN, Ibrahim H, Nagoor NH
    Molecules, 2010 Nov;15(11):8048-59.
    PMID: 21063268 DOI: 10.3390/molecules15118048
    1'-(S)-1'-Acetoxychavicol acetate (ACA) isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff. was investigated for its potential as an anticancer drug. In this communication, we describe the cytotoxic and apoptotic properties of ACA on five human tumour cell lines. Data from MTT cell viability assays indicated that ACA induced both time- and dose-dependent cytotoxicity on all tumour cell lines tested and had no adverse cytotoxic effects on normal cells. Total mortality of the entire tumour cell population was achieved within 30 hrs when treated with ACA at 40.0 µM concentration. Flow cytometric analysis for annexin-V and PI dual staining demonstrated that cell death occurred via apoptosis, followed by secondary necrosis. The apoptotic effects of ACA were confirmed via the DNA fragmentation assay, in which consistent laddering of genomic DNA was observed for all tumour cell lines after a 24 hrs post-treatment period at the IC(50) concentration of ACA. A cell cycle analysis using PI staining also demonstrated that ACA induced cell cycle arrest at the G(0)/G(1) phase, corresponding to oral tumour cell lines. In conclusion, ACA exhibits enormous potential for future development as a chemotherapeutic drug against various malignancies.
    Matched MeSH terms: Cell Survival/drug effects
  18. Sok SP, Arshad NM, Azmi MN, Awang K, Ozpolat B, Hasima Nagoor N
    PLoS One, 2017;12(2):e0171329.
    PMID: 28158287 DOI: 10.1371/journal.pone.0171329
    Autophagy plays a role in deciding the fate of cells by inducing either survival or death. 1'S-1-acetoxychavicol acetate (ACA) is a phenylpropanoid isolated from rhizomes of Alpinia conchigera and has been reported previously on its apoptotic effects on various cancers. However, the effect of ACA on autophagy remains ambiguous. The aims of this study were to investigate the autophagy-inducing ability of ACA in human non-small cell lung cancer (NSCLC), and to determine its role as pro-survival or pro-death mechanism. Cell viability assay was conducted using MTT. The effect of autophagy was assessed by acridine orange staining, GFP-LC3 punctate formation assay, and protein level were analysed using western blot. Annexin V-FITC/PI staining was performed to detect percentage of cells undergoing apoptosis by using flow cytometry. ACA inhibits the cell viability and induced formation of cytoplasmic vacuoles in NSCLC cells. Acidic vesicular organelles and GFP-LC3 punctate formation were increased in response to ACA exposure in A549 and SK-LU-1 cell lines; implying occurrence of autophagy. In western blot, accumulation of LC3-II accompanied by degradation of p62 was observed, which further confirmed the full flux of autophagy induction by ACA. The reduction of Beclin-1 upon ACA treatment indicated the Beclin-1-independent autophagy pathway. An early autophagy inhibitor, 3-methyaldenine (3-MA), failed to suppress the autophagy triggered by ACA; validating the existence of Beclin-1-independent autophagy. Silencing of LC3-II using short interfering RNA (siRNA) abolished the autophagy effects, enhancing the cytotoxicity of ACA through apoptosis. This proposed ACA triggered a pro-survival autophagy in NSCLC cells. Consistently, co-treatment with lysosomal inhibitor, chloroquine (CQ), exerted a synergistic effect resulting in apoptosis. Our findings suggested ACA induced pro-survival autophagy through Beclin-1-independent pathway in NSCLC. Hence, targeting autophagy pathway using autophagy inhibitor such as CQ represented a novel promising approach to potentiate the cytotoxicity of ACA through apoptosis in NSCLC.
    Matched MeSH terms: Cell Survival/drug effects
  19. Batumalaie K, Qvist R, Yusof KM, Ismail IS, Sekaran SD
    Clin Exp Med, 2014 May;14(2):185-95.
    PMID: 23584372 DOI: 10.1007/s10238-013-0236-7
    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.
    Matched MeSH terms: Cell Survival/drug effects
  20. Yeo EH, Goh WL, Chow SC
    Toxicol. Mech. Methods, 2018 Mar;28(3):157-166.
    PMID: 28849708 DOI: 10.1080/15376516.2017.1373882
    The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links