Displaying publications 41 - 60 of 1710 in total

Abstract:
Sort:
  1. Liu J, Zhu F, Yang J, Wang Y, Ma X, Lou Y, et al.
    Food Chem, 2023 Jun 15;411:135499.
    PMID: 36696717 DOI: 10.1016/j.foodchem.2023.135499
    Shrimp meat is prone to autolysis and decay due to the abundance of endogenous enzymes and contamination from microorganisms. HVEF freezing can slow the spoilage of shrimp, producing small and uniform ice crystals, resulting in less damage to muscle tissue. In this study, HVEF technique was used to freeze the shrimp (Solenocera melantho), and the UPLC-MS metabolic technique was used to investigate the metabolites of frozen shrimp meat. Compared with the control group, 367 differential metabolites were identified in the HVEF group. Mapping them to the KEGG database, there were 108 with KEGG ID. Purine metabolism and pyrimidine metabolism were the most enriched pathways. In addition, phosphatidylcholines (PCs), inosine (HxR), and l-valine were identified as potential biomarkers associated with lipid, nucleotide, and organic acid metabolism, respectively. Overall, HVEF can improve freezing quality of shrimp meat by slowing down the metabolism of substances in the muscle of S. melantho.
    Matched MeSH terms: Chromatography, Liquid
  2. Levitsky LI, Ivanov MV, Goncharov AO, Kliuchnikova AA, Bubis JA, Lobas AA, et al.
    J Proteome Res, 2023 Jun 02;22(6):1695-1711.
    PMID: 37158322 DOI: 10.1021/acs.jproteome.2c00740
    The proteogenomic search pipeline developed in this work has been applied for reanalysis of 40 publicly available shotgun proteomic datasets from various human tissues comprising more than 8000 individual LC-MS/MS runs, of which 5442 .raw data files were processed in total. This reanalysis was focused on searching for ADAR-mediated RNA editing events, their clustering across samples of different origins, and classification. In total, 33 recoded protein sites were identified in 21 datasets. Of those, 18 sites were detected in at least two datasets, representing the core human protein editome. In agreement with prior artworks, neural and cancer tissues were found to be enriched with recoded proteins. Quantitative analysis indicated that recoding the rate of specific sites did not directly depend on the levels of ADAR enzymes or targeted proteins themselves, rather it was governed by differential and yet undescribed regulation of interaction of enzymes with mRNA. Nine recoding sites conservative between humans and rodents were validated by targeted proteomics using stable isotope standards in the murine brain cortex and cerebellum, and an additional one was validated in human cerebrospinal fluid. In addition to previous data of the same type from cancer proteomes, we provide a comprehensive catalog of recoding events caused by ADAR RNA editing in the human proteome.
    Matched MeSH terms: Chromatography, Liquid
  3. Palasuberniam P, Tan KY, Chan YW, Blanco FB, Tan CH
    Trans R Soc Trop Med Hyg, 2023 Jun 02;117(6):428-434.
    PMID: 36611268 DOI: 10.1093/trstmh/trac125
    BACKGROUND: Philippine Cobra Antivenom (PCAV) is the only snake antivenom manufactured in the Philippines. It is used clinically to treat envenoming caused by the Philippine Spitting Cobra (Naja philippinensis). While PCAV is effective pharmacologically, it is crucial to ensure the safety profile of this biologic that is derived from animal plasma.

    METHODS: This study examined the composition purity of PCAV through a decomplexation proteomic approach, applying size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tandem mass spectrometry liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    RESULTS: SDS-PAGE and SEC showed that the major protein in PCAV (constituting ∼80% of total proteins) is approximately 110 kDa, consistent with the F(ab')2 molecule. This protein is reducible into two subunits suggestive of the light and heavy chains of immunoglobulin G. LC-MS/MS further identified the proteins as equine immunoglobulins, representing the key therapeutic ingredient of this biologic product. However, protein impurities, including fibrinogens, alpha-2-macroglobulins, albumin, transferrin, fibronectin and plasminogen, were detected at ∼20% of the total antivenom proteins, unveiling a concern for hypersensitivity reactions.

    CONCLUSIONS: Together, the findings show that PCAV contains a favorable content of F(ab')2 for neutralization, while the antibody purification process awaits improvement to minimize the presence of protein impurities.

    Matched MeSH terms: Chromatography, Liquid
  4. Rahmawati R, Hartati YW, Latip JB, Herlina T
    J Sep Sci, 2023 Jun;46(12):e2200800.
    PMID: 36715692 DOI: 10.1002/jssc.202200800
    Plants in the genus Erythrina is a potential source of chemical constituents, one of which is flavonoids, which have diverse bioactivities. To date, literature on the flavonoids from the genus Erythrina has only highlighted the phytochemical aspects, so this review article will discuss isolation techniques and strategies for the first time. More than 420 flavonoids have been reported in the Erythrina genus, which are grouped into 17 categories. These flavonoid compounds were obtained through isolation techniques and strategies using polar, semi-polar, and non-polar solvents. Various chromatographic techniques have been developed to isolate flavonoids using column flash chromatography, quick column chromatography, centrifugally accelerated thin-layer chromatography, radial chromatography, medium-pressure column chromatography, semi-preparative high-performance liquid chromatography, and preparative high-performance liquid chromatography. Chromatographic processes for isolating flavonoids can be optimized using multivariate statistical applications such as response surface methodology with central composite design, Box-Behnken design, Doehlert design, and mixture design.
    Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Thin Layer
  5. Hamzah N, Kjellberg M, Vanninen P
    Rapid Commun Mass Spectrom, 2023 May 15;37(9):e9495.
    PMID: 36799074 DOI: 10.1002/rcm.9495
    RATIONALE: This paper describes an in vitro study designed to identify metabolic biomarkers resulting from the conjugation of nitrogen mustards (NMs) with glutathione (GSH). The method developed is essential in providing evidence in the event of NM exposure in biomedical samples.

    METHODS: The mass spectral characterization of the proposed NMs-GSH conjugates was performed with liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). The final reaction mixtures were analysed in positive electrospray ionisation (ESI) at different incubation times.

    RESULTS: This study identified three types of conjugates in addition to ethanolamines, the hydrolysis products of NMs. Monoglutathionyl, diglutathionyl and phosphorylated conjugates were produced for each of the NMs, bis(2-chloroethyl)ethylamine (HN1), bis(2-chloroethyl)methylamine (HN2) and tris(2-chloroethyl)amine (HN3). The monoglutathionyl conjugates consisted of HN1-GSH, HN2-GSH and HN3-GSH. The spontaneous and primary conjugates of diglutathionyl were HN1-GSH2, HN2-GSH2 and HN3-GSH2. These included phosphorylated conjugates, namely HN1-GSH-PO4 , HN2-GSH-PO4 and HN3-GSH-PO4 , as might have formed due to hydrolysis in phosphate buffer.

    CONCLUSIONS: The mass spectral data of all conjugates formed in the presence of all NMs and GSH are reported in this study. These GSH metabolites can be used to confirm NMs toxicity in biological samples such as urine.

    Matched MeSH terms: Chromatography, Liquid/methods
  6. Prabhu NB, Vasishta S, Bhat SK, Joshi MB, Kabekkodu SP, Satyamoorthy K, et al.
    Environ Sci Pollut Res Int, 2023 May;30(23):64025-64035.
    PMID: 37060405 DOI: 10.1007/s11356-023-26820-w
    Polycystic ovarian syndrome (PCOS) is a complicated endocrinopathy with an unclear etiology that afflicts fertility status in women. Although the underlying causes and pathophysiology of PCOS are not completely understood, it is suspected to be driven by environmental factors as well as genetic and epigenetic factors. Bisphenol A (BPA) is a weak estrogenic endocrine disruptor known to cause adverse reproductive outcomes in women. A growing relevance supports the notion that BPA may contribute to PCOS pathogenesis. Due to the indeterminate molecular mechanisms of BPA in PCOS endocrinopathy, we sought liquid chromatography with tandem mass spectrometry (LC-MS/MS), a metabolomics strategy that could generate a metabolic signature based on urinary BPA levels of PCOS and healthy individuals. Towards this, we examined urinary BPA levels in PCOS and healthy women by ELISA and performed univariate and chemometric analysis to distinguish metabolic patterns among high and low BPA in PCOS and healthy females, followed by pathway and biomarker analysis employing MetaboAnalyst 5.0. Our findings indicated aberrant levels of certain steroids, sphingolipids, and others, implying considerable disturbances in steroid hormone biosynthesis, linoleic, linolenic, sphingolipid metabolism, and various other pathways across target groups in comparison to healthy women with low BPA levels. Collectively, our findings provide insight into metabolic signatures of BPA-exposed PCOS women, which can potentially improve management strategies and precision medicine.
    Matched MeSH terms: Chromatography, Liquid
  7. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tan WK, et al.
    J Pharm Biomed Anal, 2023 Apr 01;227:115308.
    PMID: 36827737 DOI: 10.1016/j.jpba.2023.115308
    Extracts of two Salvia species, Salvia apiana (white sage) and Salvia officinalis (common sage) were screened for phytoconstituents with the ability to act as antidiabetic, cognitive enhancing, or antimicrobial agents, by hyphenation of high-performance thin-layer chromatography with enzymatic and microbial effect directed assays. Two bioactive zones with α-amylase inhibition (zone 1 and zone 2), 3 zones for acetylcholinesterase inhibition (zones 3, 4 and 5), and two zones for antimicrobial activity (zones 4 and 5) were detected. The compounds from the five bioactive zones were initially identified by coelution with standards and comparing the RF values of standards to the bioautograms. Identity was confirmed with ATR-FTIR spectra of the isolated compounds from the bioactive zones. A significantly higher α-amylase and acetylcholinesterase inhibition of S. apiana leaf extract was associated with a higher flavonoid and diterpenoid content. Fermented S. officinalis extract exhibited a significantly higher ability to inhibit α-amylase compared to other non-fermented extracts from this species, due to increased extraction of flavonoids. The ATR-FTIR spectra of 2 zones with α-amylase inhibition, indicated that flavonoids and phenolic acids were responsible for α-amylase inhibition. Multiple zones of acetylcholinesterase inhibition were related to the presence of phenolic abietane diterpenoids and triterpenoid acids. The presence of abietane diterpenoids and triterpenoid acids was also found responsible for the mild antimicrobial activity. Flash chromatography was used to isolate sufficient amounts of bioactive compounds for further characterisation via NMR and MS spectroscopy. Five compounds were assigned to the zones where bioactivity was observed: cirsimaritin (zone 1), a caffeic acid polymer (zone 2), 16-hydroxyrosmanol (zone 3), 16-hydroxycarnosic acid (zone 4), oleanolic and ursolic acids (zone 5).
    Matched MeSH terms: Chromatography, Thin Layer/methods
  8. Chong SG, Ismail IS, Ahmad Azam A, Tan SJ, Shaari K, Tan JK
    J Sci Food Agric, 2023 Apr;103(6):3146-3156.
    PMID: 36426592 DOI: 10.1002/jsfa.12355
    BACKGROUND: Soybeans (Glycine max) are high in proteins and isoflavones, which offer many health benefits. It has been suggested that the fermentation process enhances the nutrients in the soybeans. Organic foods are perceived as better than non-organic foods in terms of health benefits, yet little is known about the difference in the phytochemical content that distinguishes the quality of organic soybeans from non-organic soybeans. This study investigated the chemical profiles of non-organic (G, T, U, UB) and organic (C, COF, A, R, B, Z) soybeans (G. max [L.] Merr.) and their metabolite changes after fermentation with Rhizopus oligosporus.

    RESULTS: A clear separation was only observed between non-organic G and organic Z, which were then selected for further investigation in the fermentation of soybeans (GF and ZF). All four groups (G, Z, GF, ZF) were analyzed using nuclear magnetic resonance (NMR) spectroscopy along with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this way a total of 41 and 47 metabolites were identified respectively, with 12 in common. A clear variation (|log1.5 FC| > 2 and P 

    Matched MeSH terms: Chromatography, Liquid
  9. Abdullah N, Goh YX, Othman R, Ismail N, Jalal N, Wan Sallam WAF, et al.
    J Clin Lab Anal, 2023 Apr;37(8):e24898.
    PMID: 37243371 DOI: 10.1002/jcla.24898
    OBJECTIVE: Glycated haemoglobin (HbA1c) is a standard indication for screening type 2 diabetes that also has been widely used in large-scale epidemiological studies. However, its long-term quality (in terms of reproducibility) stored in liquid nitrogen is still unknown. This study is aimed to evaluate the stability and reproducibility of HbA1c measurements from frozen whole blood samples kept at -196°C for more than 7 years.

    METHODS: A total of 401 whole blood samples with a fresh HbA1c measurement were randomly selected from The Malaysian Cohort's (TMC) biobank. The HbA1c measurements of fresh and frozen (stored for 7-8 years) samples were assayed using different high-performance liquid chromatography (HPLC) systems. The HbA1c values of the fresh samples were then calculated and corrected according to the later system. The reproducibility of HbA1c measurements between calculated-fresh and frozen samples was assessed using a Passing-Bablok linear regression model. The Bland-Altman plot was then used to evaluate the concordance of HbA1c values.

    RESULTS: The different HPLC systems highly correlated (r = 0.99) and agreed (ICC = 0.96) with each other. Furthermore, the HbA1c measurements for frozen samples strongly correlate with the corrected HbA1c values of the fresh samples (r = 0.875) with a mean difference of -0.02 (SD: -0.38 to 0.38). Although the mean difference is small, discrepancies were observed within the diabetic and non-diabetic samples.

    CONCLUSION: These data demonstrate that the HbA1c measurements between fresh and frozen samples are highly correlated and reproducible.

    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  10. Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E
    Food Chem, 2023 Mar 15;404(Pt A):134607.
    PMID: 36272303 DOI: 10.1016/j.foodchem.2022.134607
    This research assessed the influence of pickling, fermentation, germination, and tea brewing on lignan content of a variety of food highly consumed in Malaysia. Lignans have been measured by a validated LC-MS/MS method. Secoisolariciresinol (SECO) was the most abundant compound in fermented and germinated samples. Pickling significantly decreased larisiresinol content by approximately 86 %. Fermentation increased lignan content in a mixture of flaxseed and mung beans (799.9 ± 67.4 mg/100 g DW) compared to the unfermented counterpart (501.4 ± 134.6 mg/100 g DW), whereas the fermentation of soybeans and mung beans did not significantly affect the SECO content. Germination increased lignan content, which reached its peak on day 6 of germination for all the tested matrixes. In tea brew, lignans concentration increased with brewing time reaching its highest concentration at 10 min of brewing. The results of this study expand the knowledge on the effect of processing on lignan content in food.
    Matched MeSH terms: Chromatography, Liquid
  11. Shahriman MS, Mohamad S, Mohamad Zain NN, Raoov M
    Talanta, 2023 Mar 01;254:124188.
    PMID: 36521327 DOI: 10.1016/j.talanta.2022.124188
    A paper-based polymeric ionic liquid (p-Poly-(MMA-IL)) was successfully developed by grafting the polymeric ionic liquid on the surface of commercial filter paper (FP) by using the dipping method, presenting a new cost-effective film. The newly developed p-Poly-(MMA-IL) FP was then applied as a paper-based thin-film microextraction (p-TFME) analytical device to extract 14 compounds as representative of five groups of antibiotic drugs, which were sulfonamides, tetracyclines, fluoroquinolones, penicillin and macrolides in environmental water samples. Besides, p-Poly-(MMA-IL) FP, p-Poly-(MMA) FP, and unmodified filter paper were successfully characterised by FTIR, NMR, FESEM, TGA, and XRD techniques. They underwent significant parameters optimisation, which affected the extraction efficiency. Under optimal conditions, the proposed (p-Poly-(MMA-IL) FP-TFME) device method was evaluated and applied to analyse multi-class antibiotic drugs in environmental water samples by using a liquid chromatography-mass spectrometry (LC-MS). The validation method showed that a good linearity (0.1 μg L-1 - 500 μg L-1) was noted (R2 > 0.993, n = 3). Detection and quantification limits were within 0.05 μg L-1 - 4.52 μg L-1 and 0.15 μg L-1 - 13.6 μg L-1, respectively. The relative standard deviation (RSD) values ranged at 1.4%-12.2% (intra-day, n = 15) and 4.4%-11.0% (inter-day, n = 10). The extraction recoveries of environmental water samples ranged from 79.1% to 126.8%, with an RSD of less than 15.4% (n = 3). The newly developed paper-based polymeric ionic liquid (p-Poly-(MMA-IL) FP) for analysis of multi-class antibiotic drugs under the p-TFME analytical device procedure was successfully achieved with limited sample volume and organic solvent, fast extraction, and feasible in daily analysis. The detection concentration and relative RSD of multi-class antibiotics determined in various environmental water samples by the proposed method (n = 5) were within 0.44 μg L-1 - 54.41 μg L-1 and 0.69%-15.56%, respectively. These results signified the potential of the p-Poly-(MMA-IL) FP-TFME device as an efficient, sensitive and environmentally friendly approach for analysing antibiotics.
    Matched MeSH terms: Chromatography, High Pressure Liquid; Chromatography, Liquid/methods
  12. Stephenson AJ, Hunter B, Shaw PN, Kassim NSA, Trengove R, Takechi R, et al.
    Anal Bioanal Chem, 2023 Mar;415(7):1357-1369.
    PMID: 36705732 DOI: 10.1007/s00216-023-04527-8
    Despite its critical role in neurodevelopment and brain function, vitamin D (vit-D) homeostasis, metabolism, and kinetics within the central nervous system remain largely undetermined. Thus, it is of critical importance to establish an accurate, highly sensitive, and reproducible method to quantitate vit-D in brain tissue. Here, we present a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method and for the first time, demonstrate detection of seven major vit-D metabolites in brain tissues of C57BL/6J wild-type mice, namely 1,25(OH)2D3, 3-epi-1,25(OH)2D3, 1,25(OH)2D2, 25(OH)D3, 25(OH)D2, 24,25(OH)2D3, and 24,25(OH)2D2. Chromatographic separation was achieved on a pentaflurophenyl column with 3 mM ammonium formate water/methanol [A] and 3 mM ammonium formate methanol/isopropanol [B] mobile phase components. Detection was by positive ion electrospray tandem mass spectrometry with the EVOQ elite triple quadrupole mass spectrometer with an Advance ultra-high-performance liquid chromatograph and online extraction system. Calibration standards of each metabolite prepared in brain matrices were used to validate the detection range, precision, accuracy, and recovery. Isotopically labelled analogues, 1,25(OH)2D3-d3, 25(OH)D3-c5, and 24,25(OH)2D3-d6, served as the internal standards for the closest molecular-related metabolite in all measurements. Standards between 1 fg/mL and 10 ng/mL were injected with a resulting linear range between 0.001 and 1 ng, with an LLOD and LLOQ of 1 pg/mL and 12.5 pg/mL, respectively. The intra-/inter-day precision and accuracy for measuring brain vit-D metabolites ranged between 0.12-11.53% and 0.28-9.11%, respectively. Recovery in acetonitrile ranged between 99.09 and 106.92% for all metabolites. Collectively, the sensitivity and efficiency of our method supersedes previously reported protocols used to measure vit-D and to our knowledge, the first protocol to reveal the abundance of 25(OH)D2, 1,25(OH)D2, and 24,25(OH)2D2, in brain tissue of any species. This technique may be important in supporting the future advancement of pre-clinical research into the function of vit-D in neurophysiological and neuropsychiatric disorders, and neurodegeneration.
    Matched MeSH terms: Chromatography, Liquid/methods
  13. Serag A, Zayed A, Mediani A, Farag MA
    Sci Rep, 2023 Feb 13;13(1):2533.
    PMID: 36781893 DOI: 10.1038/s41598-023-28551-x
    Tongkat ali commonly known as Malaysian Ginseng (Eurycoma longifolia) is a herbal root worldwide available in nutraceuticals, either as a crude powder or capsules blended with other herbal products. Herein, a multiplexed metabolomics approach based on nuclear magnetic resonance (NMR) and solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS) was applied for authentic tongkat ali extract vs some commercial products quality control analysis. NMR metabolite fingerprinting identified 15 major metabolites mostly ascribed to sugars, organic and fatty acids in addition to quassinoids and cinnamates. Following that, multivariate analysis as the non-supervised principal component analysis (PCA) and supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied revealing that differences were related to fatty acids and 13,21-dihydroeurycomanone being more enriched in authentic root. SPME-GC-MS aroma profiling led to the identification of 59 volatiles belonging mainly to alcohols, aldehydes/furans and sesquiterpene hydrocarbons. Results revealed that aroma of commercial products showed relatively different profiles being rich in vanillin, maltol, and methyl octanoate. Whereas E-cinnamaldehyde, endo-borneol, terpinen-4-ol, and benzaldehyde were more associated to the authentic product. The present study shed the light for the potential of metabolomics in authentication and standardization of tongkat ali and identification of its true flavor composition.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  14. Yue CS, Lim AK, Chia ML, Wong PY, Chin JSR, Wong WH
    J Food Sci, 2023 Feb;88(2):650-665.
    PMID: 36624628 DOI: 10.1111/1750-3841.16404
    In this study, an improved dansyl-chloride derivatization technique using a microwave synthesizer was used for the qualitative and quantitative analyses of biogenic amine in the fresh meat samples. The derivatization technique was optimized in terms of temperature, reaction time, and spinning speed. The derivatization method together with a validated reversed-phase HPLC-DAD method was used for the determination of biogenic amines in chicken, beef, and mutton sold in the wet market. The results of the analyses showed that tryptamine, putrescine, and histamine were generally detected in all the three types of meat. Higher levels of histamine were found in chicken and beef. However, low levels of histamine were observed in mutton. Tyramine was either detected low or moderate in all the three types of meat. The biogenic amines of the fresh meat sold in the wet market is generally higher than the reported values. The mechanisms of biogenic amines-dansyl-chloride formation were investigated and proposed. PRACTICAL APPLICATION: The biogenic amine derivatization method was improved. The improved derivatization method can be potentially used for various food products beside meats for routine biogenic amine analyses due to its fast analysis time and simplicity. High levels of biogenic amines were generally found in the meat sold in the wet markets. However, proper handling of the raw meat can reduce the risk of infection.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  15. Gandhi S, Mohamad Razif MF, Othman S, Chakraborty S, Nor Rashid N
    Mol Med Rep, 2023 Feb;27(2).
    PMID: 36633133 DOI: 10.3892/mmr.2023.12933
    The lack of specific and accurate therapeutic targets poses a challenge in the treatment of cervical cancer (CC). Global proteomics has the potential to characterize the underlying and intricate molecular mechanisms that drive the identification of therapeutic candidates for CC in an unbiased manner. The present study assessed human papillomavirus (HPV)‑induced proteomic alterations to identify key cancer hallmark pathways and protein‑protein interaction (PPI) networks, which offered the opportunity to evaluate the possibility of using these for targeted therapy in CC. Comparative proteomic profiling of HPV‑transfected (HPV16/18 E7), HPV‑transformed (CaSki and HeLa) and normal human keratinocyte (HaCaT) cells was performed using the liquid chromatography‑tandem mass spectrometry (LC‑MS/MS) technique. Both label‑free quantification and differential expression analysis were performed to assess differentially regulated proteins in HPV‑transformed and ‑transfected cells. The present study demonstrated that protein expression was upregulated in HPV‑transfected cells compared with in HPV‑transformed cells. This was probably due to the ectopic expression of E7 protein in the former cell type, in contrast to its constitutive expression in the latter cell type. Subsequent pathway visualization and network construction demonstrated that the upregulated proteins in HPV16/18 E7‑transfected cells were predominantly associated with a diverse array of cancer hallmarks, including the mTORC1 signaling pathway, MYC targets V1, hypoxia and glycolysis. Among the various proteins present in the cancer hallmark enrichment pathways, phosphoglycerate kinase 1 (PGK1) was present across all pathways. Therefore, PGK1 may be considered as a potential biomarker. PPI analysis demonstrated a direct interaction between p130 and polyubiquitin B, which may lead to the degradation of p130 via the ubiquitin‑proteasome proteolytic pathway. In summary, elucidation of the key signaling pathways in HPV16/18‑transfected and ‑transformed cells may aid in the design of novel therapeutic strategies for clinical application such as targeted therapy and immunotherapy against cervical cancer.
    Matched MeSH terms: Chromatography, Liquid
  16. Tey HY, Breadmore MC, See HH
    Anal Chem, 2023 Jan 31;95(4):2134-2139.
    PMID: 36649064 DOI: 10.1021/acs.analchem.2c02937
    A polymer inclusion membrane (PIM) based sampling probe was developed for electrokinetic extraction of drugs from biological fluids. The probe was fabricated by dip-coating a nonconductive glass capillary tube in a homogeneous PIM solution for three cycles. The PIM solution comprised cellulose triacetate (CTA), 2-nitrophenyl octyl ether (NPOE), and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [EMIM][NTf2] in a ratio of 5:4:2. The developed probe electrokinetically extracted doxorubicin from human plasma, human serum, and dried blood spot (DBS). The practicability and reliability of the electrokinetic extraction were evaluated by LC-MS/MS to quantify the desorption of extracted doxorubicin. Under the optimized conditions, a quantification limit of 0.2-2 ng/mL was achieved for the three biological samples. The probe was further integrated into a portable battery-powered device for safe low-voltage (36 V) electrokinetic extraction. The developed technique is envisioned to provide a more efficient analytical workflow in the laboratory.
    Matched MeSH terms: Chromatography, Liquid
  17. Razak MR, Aris AZ, Sukatis FF, Zaki MRM, Zainuddin AH, Haron DEM, et al.
    J Sep Sci, 2023 Jan;46(1):e2200282.
    PMID: 36337037 DOI: 10.1002/jssc.202200282
    In toxicological analysis, the analytical validation method is important to assess the exact risk of contaminants of emerging concern in the environment. Syringe filters are mainly used to remove impurities from sample solutions. However, the loss of analyte to the syringe filter could be considerable, causing an underestimate of the analyte concentrations. The current study develops and validates simultaneous liquid chromatography-mass spectrometry analysis using a direct filtration method to detect four groups of contaminants of emerging concern. The adsorption of the analyte onto three different matrices and six types of syringe filters is reported. The lowest adsorption of analytes was observed in methanol (16.72%), followed by deionized water (48.19%) and filtered surface lake water (48.94%). Irrespective of the type of the matrices, the lowest average adsorption by the syringe filter was observed in the 0.45 μm polypropylene membrane (15.15%), followed by the 0.20 μm polypropylene membrane (16.10%), the 0.20 μm regenerated cellulose (16.15%), the 0.20 μm polytetrafluoroethylene membrane (47.38%), the 0.45 μm nylon membrane (64.87%) and the 0.20 μm nylon membrane (71.30%). In conclusion, the recommended syringe filter membranes for contaminants of emerging concern analysis are polypropylene membranes and regenerated cellulose, regardless of the matrix used.
    Matched MeSH terms: Chromatography, Liquid
  18. Lee PY, Low TY
    Methods Mol Biol, 2023;2690:299-310.
    PMID: 37450156 DOI: 10.1007/978-1-0716-3327-4_25
    Affinity purification coupled to mass spectrometry (AP-MS) is a powerful method to analyze protein-protein interactions (PPIs). The AP-MS approach provides an unbiased analysis of the entire protein complex and is useful to identify indirect interactors. However, reliable protein identification from the complex AP-MS experiments requires appropriate control of false identifications and rigorous statistical analysis. Another challenge that can arise from AP-MS analysis is to distinguish bona fide interacting proteins from the non-specifically bound endogenous proteins or the "background contaminants" that co-purified by the bait experiments. In this chapter, we will first describe the protocol for performing in-solution trypsinization for the samples from the AP experiment followed by LC-MS/MS analysis. We will then detail the MaxQuant workflow for protein identification and quantification for the PPI data derived from the AP-MS experiment. Finally, we describe the CRAPome interface to process the data by filtering against contaminant lists, score the interactions and visualize the protein interaction networks.
    Matched MeSH terms: Chromatography, Affinity/methods; Chromatography, Liquid
  19. Low TY, Lee PY
    Methods Mol Biol, 2023;2690:69-80.
    PMID: 37450137 DOI: 10.1007/978-1-0716-3327-4_6
    Proteins often interact with each other to form complexes and play functional roles in almost all cellular processes. The study of protein-protein interactions is therefore critical to understand protein function and biological pathways. Affinity Purification coupled with Mass Spectrometry (AP-MS) is an invaluable technique for identifying the interaction partners in protein complexes. In this approach, the protein of interest is fused to an affinity tag, followed by the expression and purification of the fusion protein. The affinity-purified sample is then analyzed by mass spectrometry to identify the interaction partners of the bait proteins. In this chapter, we detail the protocol for tandem affinity purification (TAP) based on the use of the FLAG (a fusion tag with peptide sequence DYKDDDDK) and hemagglutinin (HA) peptide epitopes. The immunoprecipitation using dual-affinity tags offers the advantage of increasing the specificity of the purification with lower nonspecific-background interactions.
    Matched MeSH terms: Chromatography, Affinity/methods
  20. Corrie L, Gulati M, Kaur J, Awasthi A, Vishwas S, Ramanunny AK, et al.
    Curr Drug Res Rev, 2023;15(3):272-285.
    PMID: 36683365 DOI: 10.2174/2589977515666230120140543
    BACKGROUND: Curcumin (CRM) is known to possess various therapeutic properties, such as anti-inflammatory and antidiabetic properties, and is, therefore, considered to be an effective therapeutic.

    OBJECTIVE: A sensitive method for the estimation of CRM in plasma, as well as fecal matter-based solid self-nano emulsifying drug delivery system (S-SNEDDS), has been reported for the first time.

    METHODS: A bioanalytical method was optimized using Box-Behnken Design having 13 runs and 3 responses. The optimized method was developed using methanol and water (70:30 v/v) with a flow rate of 1 mL/min. Quercetin was used as an internal standard. A specificity test was also performed for the developed CRM solid self-nano emulsifying drug delivery system.

    RESULTS: The retention time of CRM was found to be 14.18 minutes. The developed method was validated and found to be linear in the range of 50-250 ng/mL with an R2 of 0.999. Accuracy studies indicated that CRM had a percentage recovery of less than 105% and more than 95%, respectively. Precision studies were carried out for inter, intraday, and inter-analyst precision, and the %RSD was found to be less than 2%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.37 ng/mL and 10.23 ng/mL, respectively. Stability studies for shortterm, long term and freeze-thaw cycles showed a %RSD of less than 2%, indicating the stability of CRM in the plasma matrix. Moreover, the blank fecal microbiota extract slurry did not show any peak at the retention time of CRM in a CRM-loaded solid nanoemulsifying drug delivery system containing fecal microbiota extract indicating its specificity.

    CONCLUSION: Hence, the developed method can have clinical implications as it helps estimate CRM in blood samples and also provides a simple and sensitive method for the estimation of plant-based flavonoids along with fecal microbiota extract formulations.

    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links