Displaying publications 41 - 60 of 382 in total

Abstract:
Sort:
  1. Rosilah Ab Aziz, Kodi Isparan Kandasamy, Faridah Qamaruz Zaman, Parameswari Namasivayam
    MyJurnal
    The in vitro shoot proliferation of endemic Begonia pavonina in three culture conditions i.e semisolid medium (SM), liquid culture medium (LM) and in temporary immersion bioreactor system (RITA®) was analyzed in this study. To minimize contamination rates, seeds were surface sterilized and cultured on MS basal media. The clean raised shoots were then used as explants for inoculation onto the tested culture conditions. In this experiment, the explants were maintained in MS medium supplemented with 0.1mgL-1 BAP for shoot multiplication. After 4 weeks of incubation, higher regeneration rates were observed in TIM as compared to other medium conditions. The maximum shoot number was obtained from TIM system with a mean of 5.30 shoots per explant, followed by LM (2.47 shoots per explant) and SM (1.2 shoots per explant). Shoot hyperhydration was also lowest in a TIM system. Overall, TIM was shown to produce higher shoot multiplications combined with healthy morphological characteristics of plantlets. Shoot cultures from the all cultures were successfully rooted in vitro and acclimatized well in the greenhouse.
    Matched MeSH terms: Culture Media, Conditioned
  2. Abu ML, Mohammad R, Oslan SN, Salleh AB
    Prep Biochem Biotechnol, 2021;51(4):350-360.
    PMID: 32940138 DOI: 10.1080/10826068.2020.1818256
    A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.
    Matched MeSH terms: Culture Media/metabolism
  3. Baharudin MMA, Ngalimat MS, Mohd Shariff F, Balia Yusof ZN, Karim M, Baharum SN, et al.
    PLoS One, 2021;16(5):e0251514.
    PMID: 33974665 DOI: 10.1371/journal.pone.0251514
    Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have reached epidemic proportions globally. Therefore, there is an urgent need for a continuous supply of antibiotics to combat the problem. In this study, bacteria initially identified as species belonging to the Bacillus amyloliquefaciens operational group were re-identified based on the housekeeping gene, gyrB. Cell-free supernatants (CFS) from the strains were used for antimicrobial tests using the agar well diffusion assay against MRSA and various types of pathogenic bacteria. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and physicochemical characteristics of the CFS were determined. Based on gyrB sequence analysis, five strains (PD9, B7, PU1, BP1 and L9) were identified as Bacillus velezensis. The CFS of all B. velezensis strains showed broad inhibitory activities against Gram-negative and -positive as well as MRSA strains. Strain PD9 against MRSA ATCC 33742 was chosen for further analysis as it showed the biggest zone of inhibition (21.0 ± 0.4 mm). The MIC and MBC values obtained were 125 μl/ml. The crude antimicrobial extract showed bactericidal activity and was stable at various temperatures (40-80°C), pH (4-12), surfactants (Tween 20, Tween 80, SDS and Triton X-100) and metal ions (MgCI2, NaCI2, ZnNO3 and CuSO4) when tested. However, the crude extract was not stable when treated with proteinase K. All these properties resembled the characteristics of peptides. The antimicrobial compound from the selected strain was purified by using solvent extraction method and silica gel column chromatography. The purified compound was subjected to High Performance Liquid Chromatography which resulted in a single peak of the anti-MRSA compound being detected. The molecular weight of the anti-MRSA compound was determined by using SDS-PAGE and zymogram. The size of the purified antimicrobial peptide was approximately ~ 5 kDa. The antimicrobial peptide produced from B. velezensis strain PD9 is a promising alternative to combat the spread of MRSA infections in the future.
    Matched MeSH terms: Culture Media, Conditioned/pharmacology
  4. Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ
    PLoS One, 2021;16(12):e0262029.
    PMID: 34972183 DOI: 10.1371/journal.pone.0262029
    Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
    Matched MeSH terms: Culture Media
  5. Akhir HM, Teoh PL
    Biosci Rep, 2020 12 23;40(12).
    PMID: 33245097 DOI: 10.1042/BSR20201325
    Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
    Matched MeSH terms: Culture Media/metabolism*
  6. Al-Masawa ME, Wan Kamarul Zaman WS, Chua KH
    Sci Rep, 2020 12 09;10(1):21583.
    PMID: 33299022 DOI: 10.1038/s41598-020-78395-y
    The scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes' expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.
    Matched MeSH terms: Culture Media/pharmacology*
  7. Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, et al.
    J Hazard Mater, 2020 12 05;400:123156.
    PMID: 32574879 DOI: 10.1016/j.jhazmat.2020.123156
    A review of valorization of oyster mushroom species and waste generated in the mushroom cultivation is presented, with a focus on the cultivation and valorization techniques, conditions, current research status and particularly the hazard mitigation and value-added recovery of the waste mushroom substrate (WMS) - an abundant waste in mushroom cultivation industry. Based on the studies reviewed, the production rate of the present mushroom industry is inadequate to meet market demands. There is a need for the development of new mushroom cultivation methods that can guarantee an increase in mushroom productivity and quality (nutritional and medicinal properties). This review shows that the cylindrical baglog cultivation method is more advantageous compared with the wood tray cultivation method to improve the mushroom yield and cost efficiency. Approximately 5 kg of potentially hazardous WMS (spreading diseases in mushroom farm) is generated for production of 1 kg of mushroom. This encourages various valorization of WMS for use in agricultural and energy conversion applications, mainly as biocompost, plant growing media, and bioenergy. The use of WMS as biofertilizer has shown desirable performance compared to conventional chemical fertilizer, whilst the use of WMS as energy feedstock could produce cleaner bioenergy sources compared to conventional fuels.
    Matched MeSH terms: Culture Media
  8. Hamood Altowayti WA, Almoalemi H, Shahir S, Othman N
    Ecotoxicol Environ Saf, 2020 Dec 01;205:111267.
    PMID: 32992213 DOI: 10.1016/j.ecoenv.2020.111267
    Arsenic is a common contaminant in gold mine soil and tailings. Microbes present an opportunity for bio-treatment of arsenic, since it is a sustainable and cost-effective approach to remove arsenic from water. However, the development of existing bio-treatment approaches depends on isolation of arsenic-resistant microbes from arsenic contaminated samples. Microbial cultures are commonly used in bio-treatment; however, it is not established whether the structure of the cultured isolates resembles the native microbial community from arsenic-contaminated soil. In this milieu, a culture-independent approach using Illumina sequencing technology was used to profile the microbial community in situ. This was coupled with a culture-dependent technique, that is, isolation using two different growth media, to analyse the microbial population in arsenic laden tailing dam sludge based on the culture-independent sequencing approach, 4 phyla and 8 genera were identified in a sample from the arsenic-rich gold mine. Firmicutes (92.23%) was the dominant phylum, followed by Proteobacteria (3.21%), Actinobacteria (2.41%), and Bacteroidetes (1.49%). The identified genera included Staphylococcus (89.8%), Pseudomonas (1.25), Corynebacterium (0.82), Prevotella (0.54%), Megamonas (0.38%) and Sphingomonas (0.36%). The Shannon index value (3.05) and Simpson index value (0.1661) indicated low diversity in arsenic laden tailing. The culture dependent method exposed significant similarities with culture independent methods at the phylum level with Firmicutes, Proteobacteria and Actinobacteria, being common, and Firmicutes was the dominant phylum whereas, at the genus level, only Pseudomonas was presented by both methods. It showed high similarities between culture independent and dependent methods at the phylum level and large differences at the genus level, highlighting the complementarity between the two methods for identification of the native population bacteria in arsenic-rich mine. As a result, the present study can be a resource on microbes for bio-treatment of arsenic in mining waste.
    Matched MeSH terms: Culture Media/chemistry
  9. Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, et al.
    Bioengineered, 2020 12;11(1):116-129.
    PMID: 31909681 DOI: 10.1080/21655979.2020.1711626
    The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
    Matched MeSH terms: Culture Media
  10. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al.
    Bioengineered, 2020 12;11(1):61-69.
    PMID: 31884878 DOI: 10.1080/21655979.2019.1704536
    Chlorella sorokiniana CY-1 was cultivated using palm oil mill effluent (POME) in a novel-designed photobioreactor (NPBR) and glass-made vessel photobioreactor (PBR). The comparison was made on biomass and lipid productions, as well as its pollutants removal efficiencies. NPBR is transparent and is developed in thin flat panels with a high surface area per volume ratio. It is equipped with microbubbling and baffles retention, ensuring effective light and CO2 utilization. The triangular shape of this reactor at the bottom serves to ease microalgae cell harvesting by sedimentation. Both biomass and lipid yields attained in NPBR were 2.3-2.9 folds higher than cultivated in PBR. The pollutants removal efficiencies achieved were 93.7% of chemical oxygen demand, 98.6% of total nitrogen and 96.0% of total phosphorus. Mathematical model revealed that effective light received and initial mass contributes toward successful microalgae cultivation. Overall, the results revealed the potential of NPBR integration in Chlorella sorokiniana CY-1 cultivation, with an aim to achieve greater feasibility in microalgal-based biofuel real application and for environmental sustainability.
    Matched MeSH terms: Culture Media/metabolism
  11. Senthilkumar S, Venugopal C, Parveen S, K S, Rai KS, Kutty BM, et al.
    Neurotoxicology, 2020 12;81:89-100.
    PMID: 32905802 DOI: 10.1016/j.neuro.2020.08.006
    Stem cell therapy provides a ray of hope for treating neurodegenerative diseases (ND). Bone marrow mesenchymal stem cells (BM-MSC) were extensively investigated for their role in neuroregeneration. However, drawbacks like painful bone marrow extraction, less proliferation and poor CNS engraftment following systemic injections of BM-MSC prompt us to search for alternate/appropriate source of MSC for treating ND. In this context, dental pulp stem cells (DPSC) could be an alternative to BM-MSC as it possess both mesenchymal and neural characteristic features due to its origin from ectoderm, ease of isolation, higher proliferation index and better neuroprotection. A study on the migration potential of DPSC compared to BM-MSC in a neurodegenerative condition is warranted. Given the neural crest origin, we hypothesize that DPSC possess better migration towards neurodegenerative milieu as compared to BM-MSC. In this prospect, we investigated the migration potential of DPSC in an in vitro neurodegenerative condition. Towards this, transwell, Matrigel and chorioallantoic membrane (CAM) migration assays were carried-out by seeding hippocampal neurons in the lower chamber and treated with 300 μM kainic acid (KA) for 6 h to induce neurodegeneration. Subsequently, the upper chamber of transwell was loaded with DPSC/BM-MSC and their migration potential was assessed following 24 h of incubation. Our results revealed that the migration potential of DPSC/BM-MSC was comparable in non-degenerative condition. However, following injury the migration potential of DPSC towards the degenerating site was significantly higher as compared to BM-MSC. Furthermore, upon exposure of naïve DPSC/BM-MSCs to culture medium derived from neurodegenerative milieu resulted in significant upregulation of homing factors like SDF-1alpha, CXCR-4, VCAM-1, VLA-4, CD44, MMP-2 suggesting that the superior migration potential of DPSC might be due to prompt expression of homing factors in DPSC compared to BM-MSCs.
    Matched MeSH terms: Culture Media, Conditioned/metabolism
  12. Kadir AA, Abdullah SRS, Othman BA, Hasan HA, Othman AR, Imron MF, et al.
    Chemosphere, 2020 Nov;259:127468.
    PMID: 32603966 DOI: 10.1016/j.chemosphere.2020.127468
    In this study, two native duckweeds (Lemna minor and Azolla pinnata) were cultivated in Palm Oil Mill Effluent (POME) to extract nutrients from the effluent. Five grams of A. pinnata and 2 g of L. minor were transferred to 2 L POME (Initial concentrations: 198 mg/L COD, 4.3 mg/L nitrates, pH 9.53, 4 mg/L phosphate, 2.98 mg/L ammonia) with four different dilutions (2.5%, 5%, 10%, 15%) under greenhouse conditions. Samples of POME were taken every two days up to 10 days. Growth parameter, phosphate, ammonia, nitrates, pH, and COD were monitored within 10 days to select the most suitable growth medium for both plants. Results showed that 2.5% POME dilution had positive effect on L. minor growth and A. pinnata (wet weight increased by 8.7 g and 9.8 g, respectively), with all plants able to survive until the final day of exposure. The highest removal of ammonia was accomplished in 5% POME dilution by A. pinnata (98%) and L. minor (95.5%). The maximum phosphate removal was obtained in 10% POME dilution with 93.3% removal by A. pinnata and 86.7% by L. minor. Significant COD removal in 15% POME was obtained by L. minor (78%) and A. pinnata (66%). Both plants responded positively to the phytoremediation process, especially for A. pinnata which showed significant decreases in all parameters. The nutrient extraction by both plants from POME showed a positive effect on growth parameter, which has further promising potential to be used as animal feedstock.
    Matched MeSH terms: Culture Media
  13. Akbar N, Siddiqui R, Sagathevan K, Khan NA
    Int Microbiol, 2020 Nov;23(4):511-526.
    PMID: 32124096 DOI: 10.1007/s10123-020-00123-3
    Infectious diseases, in particular bacterial infections, are the leading cause of morbidity and mortality posing a global threat to human health. The emergence of antibiotic resistance has exacerbated the problem further. Hence, there is a need to search for novel sources of antibacterials. Herein, we explored gut bacteria of a variety of animals living in polluted environments for their antibacterial properties against multi-drug resistant pathogenic bacteria. A variety of species were procured including invertebrate species, Blaptica dubia (cockroach), Gromphadorhina portentosa (cockroach), Scylla serrata (crab), Grammostola rosea (tarantula), Scolopendra subspinipes (centipede) and vertebrate species including Varanus salvator (water monitor lizard), Malayopython reticulatus (python), Cuora amboinensis (tortoise), Oreochromis mossambicus (tilapia fish), Rattus rattus (rat), Gallus gallus domesticus (chicken) and Lithobates catesbeianus (frog). Gut bacteria of these animals were isolated and identified using microbiological, biochemical, analytical profiling index (API) and through molecluar identification using 16S rRNA sequencing. Bacterial conditioned media (CM) were prepared and tested against selected Gram-positive and Gram-negative pathogenic bacteria as well as human cells (HaCaT). The results revealed that CM exhibited significant broad-spectrum antibacterial activities. Upon heat inactivation, CM retained their antibacterial properties suggesting that this effect may be due to secondary metabolites or small peptides. CM showed minimal cytotoxicity against human cells. These findings suggest that gut bacteria of animals living in polluted environments produce broad-spectrum antibacterial molecule(s). The molecular identity of the active molecule(s) together with their mode of action is the subject of future studies which could lead to the rational development of novel antibacterial(s).
    Matched MeSH terms: Culture Media, Conditioned/pharmacology*; Culture Media, Conditioned/chemistry
  14. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
    Matched MeSH terms: Culture Media
  15. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
    Matched MeSH terms: Culture Media
  16. Sirajuddin SA, Sundram S
    Braz J Microbiol, 2020 Sep;51(3):919-929.
    PMID: 32078730 DOI: 10.1007/s42770-020-00241-0
    Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.
    Matched MeSH terms: Culture Media/pharmacology; Culture Media/chemistry
  17. Noman AE, Al-Barha NS, Sharaf AM, Al-Maqtari QA, Mohedein A, Mohammed HHH, et al.
    Sci Rep, 2020 08 11;10(1):13527.
    PMID: 32782276 DOI: 10.1038/s41598-020-70404-4
    A novel bacterial strain of acetic acid bacteria capable of producing riboflavin was isolated from the soil sample collected in Wuhan, China. The isolated strain was identified as Gluconobacter oxydans FBFS97 based on several phenotype characteristics, biochemicals tests, and 16S rRNA gene sequence conducted. Furthermore, the complete genome sequencing of the isolated strain has showed that it contains a complete operon for the biosynthesis of riboflavin. In order to obtain the maximum concentration of riboflavin production, Gluconobacter oxydans FBFS97 was optimized in shake flask cultures through response surface methodology employing Plackett-Burman design (PBD), and Central composite design (CCD). The results of the pre-experiments displayed that fructose and tryptone were found to be the most suitable sources of carbon and nitrogen for riboflavin production. Then, PBD was conducted for initial screening of eleven minerals (FeSO4, FeCl3, KH2PO4, K2HPO4, MgSO4, ZnSO4, NaCl, CaCl2, KCl, ZnCl2, and AlCl3.6H2O) for their significances on riboflavin production by Gluconobacter oxydans strain FBFS97. The most significant variables affecting on riboflavin production are K2HPO4 and CaCl2, the interaction affects and levels of these variables were optimized by CCD. After optimization of the medium compositions for riboflavin production were determined as follows: fructose 25 g/L, tryptone 12.5 g/L, K2HPO4 9 g/L, and CaCl2 0.06 g/L with maximum riboflavin production 23.24 mg/L.
    Matched MeSH terms: Culture Media
  18. Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J
    J Biosci Bioeng, 2020 Aug;130(2):195-199.
    PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011
    Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
    Matched MeSH terms: Culture Media/metabolism; Culture Media/chemistry
  19. Norizan NABM, Halim M, Tan JS, Abbasiliasi S, Mat Sahri M, Othman F, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752106 DOI: 10.3390/molecules25153516
    Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
    Matched MeSH terms: Culture Media/chemistry*
  20. Chin ZW, Arumugam K, Ashari SE, Faizal Wong FW, Tan JS, Ariff AB, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731437 DOI: 10.3390/molecules25153416
    The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.
    Matched MeSH terms: Culture Media/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links