Displaying publications 41 - 60 of 73 in total

Abstract:
Sort:
  1. Nithianantham K, Shyamala M, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2011 Dec 06;16(12):10134-45.
    PMID: 22146374 DOI: 10.3390/molecules161210134
    BACKGROUND AND AIM: Clitoria ternatea, a medicinal herb native to tropical equatorial Asia, is commonly used in folk medicine to treat various diseases. The aim of the present study is to evaluate the hepatoprotective and antioxidant activity of C. ternatea against experimentally induced liver injury.

    METHODS: The antioxidant property of methanolic extract (ME) of C. ternatea leaf was investigated by employing an established in vitro antioxidant assay. The hepatoprotective effect against paracetamol-induced liver toxicity in mice of ME of C. ternatea leaf was also studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and billirubin along with histopathological analysis.

    RESULTS: The amount of total phenolics and flavonoids were estimated to be 358.99 ± 6.21 mg/g gallic acid equivalent and 123.75 ± 2.84 mg/g catechin equivalent, respectively. The antioxidant activity of C. ternatea leaf extract was 67.85% at a concentration of 1 mg/mL and was also concentration dependant, with an IC(50) value of 420.00 µg/mL. The results of the paracetamol-induced liver toxicity experiments showed that mice treated with the ME of C. ternatea leaf (200 mg/kg) showed a significant decrease in ALT, AST, and bilirubin levels, which were all elevated in the paracetamol group (p < 0.01). C. ternatea leaf extract therapy also protective effects against histopathological alterations. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen.

    CONCLUSIONS: The current study confirmed the hepatoprotective effect of C. ternatea leaf extract against the model hepatotoxicant paracetamol. The hepatoprotective action is likely related to its potent antioxidative activity.

    Matched MeSH terms: Drug-Induced Liver Injury/blood; Drug-Induced Liver Injury/drug therapy*; Drug-Induced Liver Injury/pathology
  2. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Drug-Induced Liver Injury/blood; Drug-Induced Liver Injury/metabolism*; Drug-Induced Liver Injury/pathology*
  3. Zyoud SH, Awang R, Sulaiman SA, Al-Jabi SW
    Pharmacoepidemiol Drug Saf, 2010 May;19(5):511-7.
    PMID: 20333776 DOI: 10.1002/pds.1940
    Acetaminophen poisoning is a common clinical problem, and early identification of patients with more severe poisoning is key to improving outcomes.
    Matched MeSH terms: Drug-Induced Liver Injury/diagnosis; Drug-Induced Liver Injury/epidemiology; Drug-Induced Liver Injury/prevention & control
  4. Somchit N, Norshahida AR, Hasiah AH, Zuraini A, Sulaiman MR, Noordin MM
    Hum Exp Toxicol, 2004 Nov;23(11):519-25.
    PMID: 15625777
    Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.
    Matched MeSH terms: Drug-Induced Liver Injury/blood; Drug-Induced Liver Injury/etiology; Drug-Induced Liver Injury/pathology*
  5. Gnanaraj C, Shah MD, Makki JS, Iqbal M
    Pharm Biol, 2016 Aug;54(8):1420-33.
    PMID: 26810847 DOI: 10.3109/13880209.2015.1104697
    Context The antioxidative properties of plants or plant derivative products are well known for their free radical scavenging effects. Flagellaria indica L. (Flagellariaceae) (FI) is a tropical medicinal plant used by the natives of Sabah as medication for semi-paralysis. Objective This study evaluates the hepatoprotective mechanism of FI against carbon tetrachloride (CCl4)-mediated liver damage. Materials and methods Aqueous extract of FI leaves was orally administered to adult Sprague-Dawley rats once daily for 14 consecutive days at 300, 400, and 500 mg/kg b.w. prior to CCl4 treatment (1.0 mL/kg b.w.) on the 13th and 14th days. Results Total phenolic content in the aqueous extract of FI leaves was 65.88 ± 1.84 mg gallic acid equivalent/g. IC50 value for free radical scavenging activity of FI aqueous extract was reached at the concentration of 400 μg/mL. Biochemical studies show that the aqueous extract of FI was able to prevent the increase in levels of serum transaminases, alanine aminotransferase, and aspartate aminotransferase (38-74% recovery), and malondialdehyde formation (25-87% recovery) in a dose-dependent manner. Immunohistochemical results evidenced the suppression of oxidative stress markers (4-hydroxynonenal and 8-hydroxydeoxyguanosine) and pro-inflammatory markers (tumour necrosis factor-α, interleukin-6, prostaglandin E2). Histopathological and hepatocyte ultrastructural alterations proved that there were protective effects in FI against CCl4-mediated liver injury. Signs of toxicity were not present in rats treated with FI alone (500 mg/kg b.w.). Discussion and conclusion It can be concluded that the presence of phenolic constituents and their antioxidative effects can be credited to the hepatoprotective activity of FI.
    Matched MeSH terms: Drug-Induced Liver Injury/metabolism; Drug-Induced Liver Injury/pathology; Drug-Induced Liver Injury/prevention & control*
  6. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Mar;35(3):259-66.
    PMID: 25904316 DOI: 10.1177/0960327115583362
    Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p < 0.001) in animals receiving a pretreatment of DAS. DAS protected against hepatic lipid peroxidation, hydrogen peroxide generation, preserved GSH levels, and GSH metabolizing enzymes to 60-80% as compared to Fe-NTA alone-treated group. Present data suggest that DAS can ameliorate the toxic effects of Fe-NTA and suppress oxidant-induced tissue injury and hepatotoxicity in rats.
    Matched MeSH terms: Drug-Induced Liver Injury/drug therapy*; Drug-Induced Liver Injury/etiology; Drug-Induced Liver Injury/metabolism
  7. Fakurazi S, Hairuszah I, Nanthini U
    Food Chem Toxicol, 2008 Aug;46(8):2611-5.
    PMID: 18514995 DOI: 10.1016/j.fct.2008.04.018
    Initiation of acetaminophen (APAP) toxicities is believed to be promoted by oxidative stress during the event of overdosage. The aim of the present study was to evaluate the hepatoprotective action of Moringa oleifera Lam (MO), an Asian plant of high medicinal value, against a single high dose of APAP. Groups of five male Sprague-Dawley rats were pre-administered with MO (200 and 800 mg/kg) prior to a single dose of APAP (3g/kg body weight; p.o). Silymarin was used as an established hepatoprotective drug against APAP induced liver injury. The hepatoprotective activity of MO extract was observed following significant histopathological analysis and reduction of the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in groups pretreated with MO compared to those treated with APAP alone. Meanwhile, the level of glutathione (GSH) was found to be restored in MO-treated animals compared to the groups treated with APAP alone. These observations were comparable to the group pretreated with silymarin prior to APAP administration. Group that was treated with APAP alone exhibited high level of transaminases and ALP activities besides reduction in the GSH level. The histological hepatocellular deterioration was also evidenced. The results from the present study suggested that the leaves of MO can prevent hepatic injuries from APAP induced through preventing the decline of glutathione level.
    Matched MeSH terms: Drug-Induced Liver Injury/metabolism*; Drug-Induced Liver Injury/pathology; Drug-Induced Liver Injury/prevention & control*
  8. Norina Abdullah, Nur Zakiah Mohd Saat, Hazlin Abu Hasan, Siti Balkis Budin, Sazlina Kamaralzaman
    MyJurnal
    The protective effect of the ethanol extract of the rhizome of Zingiber officinale Roscoe on acute hepatotoxicity induced by paracetamol (1000 mg/kg) was studied in plasma and hepatic tissue samples obtained from male Sprague-Dawley rats. The ethanol extract was given in oral doses of 200 mg/kg and 300 mg/kg to the rats at 0, 4 and 8 hrs after paracetamol was given orally. The plasma and liver of the rats were subjected to biochemical analysis 24 hrs after hepatotoxicity was induced to determine the levels of superoxide dismutase(SOD), malonaldehyde (MDA) and aspartate transaminase (AST). The results were compared to the rats which were given the antidote N-acetylcysteine (NAC) (500 mg/kg) at 0, 4 and 8 hrs after the paracetamol dose. The results showed that at 200 mg/kg the extract reduced the plasma levels of SOD significantly (p < 0.05) while at a higher dose of 300 mg/kg it reduced plasma SOD, hepatic MDA, serum AST and increased the levels of plasma proteins significantly (p < 0.05). In conclusion, the ethanol extract of Z. officinale showed protective effect against paracetamol induced hepatotoxicity at both dose levels and the protective effect was better at the higher dose.
    Matched MeSH terms: Drug-Induced Liver Injury
  9. Aithal AP, Bairy LK, Seetharam RN, Rao MK
    J Cell Biochem, 2019 08;120(8):13026-13036.
    PMID: 30873677 DOI: 10.1002/jcb.28573
    BACKGROUND: To evaluate the antimutagenic potential of combination treatment of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) and silymarin and its effect on hepatocyte growth factor levels in CCl4 induced hepatotoxicity in Wistar rats.

    METHODS: Hepatotoxicity was induced in adult female Wistar rats using carbon tetrachloride (CCl4 ). Thirty-six rats were randomly divided into six groups with six rats in each group: Group 1 (normal control group), Group 2 (received only CCl 4 ), Group 3 (CCl 4 +low dose BM-MSCs), Group 4 (CCl 4 +high dose BM-MSCs), Group 5 (CCl 4  + silymarin), Group 6 (CCl 4 +silymarin+high dose BM-MSCs). Thirty days after the treatment, blood samples were collected for hepatocyte growth factor estimation. The rats were then killed, bone marrow was extracted for chromosomal aberration assay. Liver tissue was processed for evaluating the DNA fragmentation assay, histopathology, and scanning electron microscopy study.

    RESULTS: Combination treatment of silymarin and high dose BM-MSCs significantly (P liver tissue samples. The combination treatment produced significant hepatoprotective effect which was supported by histopathology and scanning electron microscopy study.

    CONCLUSION: Results indicate that the treatment of BM-MSCs in combination with silymarin had a better hepatoprotective and antimutagenic effect and represents a novel strategy for the treatment of hepatotoxicity.

    Matched MeSH terms: Drug-Induced Liver Injury/etiology; Drug-Induced Liver Injury/genetics; Drug-Induced Liver Injury/therapy*
  10. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, et al.
    Biomed Pharmacother, 2021 Aug;140:111732.
    PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732
    Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
    Matched MeSH terms: Drug-Induced Liver Injury/blood; Drug-Induced Liver Injury/drug therapy*; Drug-Induced Liver Injury/pathology
  11. Houghton PJ
    J Ethnopharmacol, 1984 Aug;11(3):293-308.
    PMID: 6482480
    Buddleja species play a minor role in the ethnopharmacology of several areas of the world where they are indigenous. Phytochemical investigation of the genus has been somewhat neglected but a picture is emerging of the type of constituents which are present in reasonable quantities, namely iridoid and flavonoid glycosides. Many of the uses of Buddleja in folk medicine such as a topical antiseptic and a diuretic can be partially explained at least by the known biological activity of compounds identical or similar to those found in the genus. Other reputed uses are, as yet, without explantation due to the incomplete state of knowledge of the chemistry and, to an even greater extent, the pharmacology of Buddleja.
    Matched MeSH terms: Drug-Induced Liver Injury/drug therapy
  12. Ebrahimi M, Daeman NH, Chong CM, Karami A, Kumar V, Hoseinifar SH, et al.
    Fish Physiol Biochem, 2017 Aug;43(4):1195-1207.
    PMID: 28349418 DOI: 10.1007/s10695-017-0365-0
    Dietary organic acids are increasingly being investigated as a potential means of improving growth and nutrient utilization in aquatic animals. A 9-week study was performed to compare equal amounts (2%) of different organic acids (sodium butyrate, acetate, propionate, or formate) on the growth, muscle proximate composition, fatty acid composition, cholesterol and lipid peroxidation, differential cell counts, plasma biochemistry, intestinal short-chain fatty acid (SCFA) level, and liver histopathology to red hybrid tilapia (Oreochromis sp.) (initial mean weight of 2.87 g). A second experiment was performed to determine their effects on lipid peroxidation and trimethylamine (TMA) when added at 1% to tilapia meat and left out for 24 h. The results of the first experiment showed no treatment effect to growth, feeding efficiencies, or muscle fatty acid composition, but all dietary organic acids significantly decreased intestinal SCFA. Dietary butyrate and propionate significantly decreased muscle lipid peroxidation compared to the control group, but the dietary formate treatment had the lowest lipid peroxidation compared to all treatments. Muscle crude protein and lipid in tilapia fed the formate diet were significantly lower and higher, respectively, and showed evidence of stress based on the differential cell counts, significantly higher plasma glucose and liver glycogen, as well as inflammatory responses in the liver. Although a potential benefit of dietary organic acids was a reduction to lipid peroxidation, this could be accomplished post-harvest by direct additions to the meat. In addition, inclusions of butyrate and propionate to tilapia meat significantly decreased TMA, which might be a more cost-effective option to improve the shelf life of tilapia products.
    Matched MeSH terms: Drug-Induced Liver Injury/veterinary*
  13. Zakaria ZA, Kamisan FH, Mohd Nasir N, Teh LK, Salleh MZ
    Nutrients, 2019 Dec 04;11(12).
    PMID: 31817058 DOI: 10.3390/nu11122945
    This study aimed to determine the antioxidant and hepatoprotective activities of semi-purified aqueous partition obtained from the methanol extract of Dicranopteris linearis (AQDL) leaves against paracetamol (PCM)-induced liver intoxication in rats. The test solutions, AQDL (50, 250, and 500 mg/kg), were administered orally to rats (n = 6) once daily for seven consecutive days followed by the hepatotoxicity induction using 3 g/kg PCM (p.o.). Blood was collected for serum biochemical parameters analysis while the liver was collected for histopathological examination and endogenous antioxidant enzymes analysis. AQDL was also subjected to antioxidant determination and phytochemical analysis. Results obtained show that AQDL possessed high total phenolic content (TPC) value and remarkable radical scavenging activities. AQDL also significantly (p < 0.05) reduced the liver weight/body weight (LW/BW) ratio or serum level of ALT, AST, and total bilirubin while significantly (p < 0.05) increase the level of superoxide dismutase (SOD) and catalase (CAT) without affecting the malondialdehyde (MDA) in the liver indicating its hepatoprotective effect. Phytoconstituents analyses showed only the presence of saponins and triterpenes, but lack of flavonoids. In conclusion, AQDL exerts hepatoprotective activity via its high antioxidant potential and ability to modulate the endogenous enzymatic antioxidant defense system possibly via the synergistic action of saponins and triterpenes.
    Matched MeSH terms: Drug-Induced Liver Injury/metabolism*
  14. Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH
    Int Immunopharmacol, 2021 Apr;93:107398.
    PMID: 33571819 DOI: 10.1016/j.intimp.2021.107398
    Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme inhibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihydroorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin production with an enhanced release of immunosuppressant cytokines. LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in cases with COVID-19. Despite success in improving patients' mobility and reducing joint destruction, reported events of LF-induced liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum bilirubin as safety biomarkers. This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic injury from the perspective of pathophysiology and possible protective agents.
    Matched MeSH terms: Drug-Induced Liver Injury/drug therapy
  15. Somchit N, Sanat F, Gan EH, Shahrin IA, Zuraini A
    Singapore Med J, 2004 Nov;45(11):530-2.
    PMID: 15510325
    Non-steroidal anti-inflammatory drugs (NSAIDs) are used to treat musculoskeletal disorders, inflammation and to control pain. Virtually all NSAIDs are capable of producing liver injury ranging from mild reversible elevation of liver enzymes to severe hepatic necrosis.
    Matched MeSH terms: Drug-Induced Liver Injury*
  16. Elderdery AY, Alzerwi NAN, Alzahrani B, Alsrhani A, Alsultan A, Rayzah M, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):127490.
    PMID: 37979758 DOI: 10.1016/j.ijbiomac.2023.127490
    Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.
    Matched MeSH terms: Drug-Induced Liver Injury*
  17. Jeyamalar R, Pathmanathan R, Wong D, Kannan P
    Ann Acad Med Singap, 1992 Nov;21(6):838-40.
    PMID: 1295429
    Amiodarone, a commonly used antiarrhythmic agent, has numerous adverse effects. The purpose of this case report is to highlight its hepatotoxicity, an unusual complication of long term amiodarone therapy. Our patient is a 76-year-old man with underlying ischaemic heart disease and recurrent ventricular tachycardia. Eleven months after commencing amiodarone, he developed asymptomatic raised aminotransferases which resolved following drug withdrawal. Amiodarone was then reintroduced and four years later, the patient developed hepatomegaly, worsening liver biochemistry and histopathological changes consistent with early cirrhosis. His symptoms improved following discontinuation of amiodarone. However, hepatomegaly and a low serum albumin still persist four years later.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology*
  18. Samuel AJ, Mohan S, Chellappan DK, Kalusalingam A, Ariamuthu S
    J Ethnopharmacol, 2012 May 7;141(1):396-402.
    PMID: 22421378 DOI: 10.1016/j.jep.2012.02.051
    The roots of Hibiscus vitifolius Linn. (Malvaceae) is used for the treatment of jaundice in the folklore system of medicine in India. This study is an attempt to evaluate the hepatoprotective activity of the roots of Hibiscus vitifolius against anti-tubercular drug induced hepatotoxicity.
    Matched MeSH terms: Drug-Induced Liver Injury/blood; Drug-Induced Liver Injury/etiology; Drug-Induced Liver Injury/pathology; Drug-Induced Liver Injury/prevention & control*
  19. Mohd Ali N, Mohd Yusof H, Long K, Yeap SK, Ho WY, Beh BK, et al.
    Biomed Res Int, 2013;2013:693613.
    PMID: 23484140 DOI: 10.1155/2013/693613
    Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean.
    Matched MeSH terms: Drug-Induced Liver Injury/drug therapy*; Drug-Induced Liver Injury/metabolism
  20. Rahman A, Vasenwala SM, Iqbal M
    Hum Exp Toxicol, 2017 Aug;36(8):785-794.
    PMID: 27758841 DOI: 10.1177/0960327116665675
    Glyceryl trinitrate (GTN) has been used widely as a potent vasodilator to treat heart conditions, such as angina pectoris and chronic heart failure. This study aims to elucidate the effect of exogenous nitric oxide (NO) administration, using GTN, on carbon tetrachloride (CCl4)-induced oxidative stress and liver injury in rats. The results obtained demonstrated that NO generated by the administration of GTN affords protection against CCl4-induced oxidative stress and liver injury. Administration of CCl4resulted in a significant ( p < 0.001) increase in lipid peroxidation and tissue damage markers (aspartate and alanine transaminase and lactate dehydrogenase) release in serum. Parallel to these changes, CCl4also caused downregulation of antioxidant enzymes including glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST), and several fold induction in γ-glutamyl transpeptidase (GGT) activity. Subsequent administration of GTN resulted in significant ( p < 0.001) recovery of GSH-metabolizing enzymes in a dose-dependent manner. Further, administration of NO inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), exacerbated CCl4-induced oxidative tissue injury. Overall, the study suggests that GTN might suppress oxidant-induced tissue injury and hepatotoxicity in rats.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology; Drug-Induced Liver Injury/prevention & control*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links