Displaying publications 41 - 60 of 75 in total

Abstract:
Sort:
  1. Abdul Jalil NAS, Aboelazm E, Khe CS, Ali GAM, Chong KF, Lai CW, et al.
    PLoS One, 2024;19(2):e0292737.
    PMID: 38324619 DOI: 10.1371/journal.pone.0292737
    The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.
    Matched MeSH terms: Electric Capacitance
  2. Mohd Zaid NA, Idris NH
    Sci Rep, 2016 08 24;6:32082.
    PMID: 27553290 DOI: 10.1038/srep32082
    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.
    Matched MeSH terms: Electric Capacitance
  3. Yang Y, Fedorov G, Shafranjuk SE, Klapwijk TM, Cooper BK, Lewis RM, et al.
    Nano Lett., 2015 Dec 09;15(12):7859-66.
    PMID: 26506109 DOI: 10.1021/acs.nanolett.5b02564
    Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
    Matched MeSH terms: Electric Capacitance
  4. Pan GT, Chong S, Yang TC, Huang CM
    Materials (Basel), 2017 Mar 31;10(4).
    PMID: 28772727 DOI: 10.3390/ma10040370
    Mesoporous Mn1.5Co1.5O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg-1 and a power density of 1.01 kW·kg-1 at 1 A·g-1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.
    Matched MeSH terms: Electric Capacitance
  5. Fayeka M, Haseeb A, Fazal MA
    Sains Malaysiana, 2017;46:295-302.
    Sn-Ag based solder alloy seems to be a promising lead-free solder for the application on electronic assembly. The corrosion behavior of different lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was investigated in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples after the tests. The results showed that the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. % decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance in terms of increased charge transfer resistance and impedance values as well as the lowest capacitance. These characteristics signify its suitability for the application in electronic packaging.
    Matched MeSH terms: Electric Capacitance
  6. Chiam SL, Lim HN, Hafiz SM, Pandikumar A, Huang NM
    Sci Rep, 2018 02 15;8(1):3093.
    PMID: 29449631 DOI: 10.1038/s41598-018-21572-x
    The energy density of conventional supercapacitors is in the range of 6-10 Wh kg-1, which has restricted them from many applications that require devices with long durations. Herein, we report a method for enhancing the energy density of a device through the parallel stacking of five copper foils coated on each side with graphene nanoplatelets. Microporous papers immersed in 2 M aqueous sodium sulphate were used as separators. With a low contact resistance of 0.05 Ω, the supercapacitor yielded an optimum specific energy density and a specific power density of 24.64 Wh kg-1 and 402 W kg-1 at 0.8 V, respectively. The working potential was increased to 2.4 V when three of the supercapacitors were connected in series, forming a tandem device. Its potential for real applications was manifested by the ability to light up a light-emitting diode for 40 s after charging for 60 s.
    Matched MeSH terms: Electric Capacitance
  7. Rusi, Majid SR
    PLoS One, 2016;11(5):e0154566.
    PMID: 27182595 DOI: 10.1371/journal.pone.0154566
    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Electric Capacitance*
  8. Srikanta Murthy A, Azis N, Jasni J, Othman ML, Mohd Yousof MF, Talib MA
    PLoS One, 2020;15(10):e0240368.
    PMID: 33035254 DOI: 10.1371/journal.pone.0240368
    This study presents an investigation on the effect of shield placement for mitigation of transient voltage in a 33/11 kV, 30 MVA transformer due to Standard Switching Impulse (SSI) and Oscillating Switching Impulse (OSI) surges. Generally, the winding and insulation in transformers could experience severe voltage stress due to the external impulses i.e. switching events. Hence, it is important to examine the voltage stress and identify the mitigation action i.e. shield placements in order to reduce the adverse effect to the transformer windings. First, the resistances, inductances, and capacitances (RLC) were calculated for disc type transformer in order to develop the winding RLC equivalent circuit. The SSI and OSI transient voltage waveforms were applied to the High Voltage (HV) winding whereby the transient voltages were simulated for each disc. The resulting voltage stresses were mitigated through different configurations of electrostatic shield placements. The resonant oscillations generated due to switching surges were analysed through initial voltage distribution. The analyses on the transient voltages of the transformer winding and standard error of the slope (SEb) reveal that the location of shield placement has a significant effect on the resonant switching voltages. The increment of the shield number in the windings does not guarantee optimize mitigation of the resonant switching transient voltages. It is found that the voltage stress along the windings is linear once a floating shield is placed between the HV and Low Voltage (LV) windings of the disc-type transformer under the SSI and OSI waveforms. These findings could assist the manufacturers with appropriate technical basis for mitigation of the transformer winding against the external transient switching overvoltage surges.
    Matched MeSH terms: Electric Capacitance
  9. Lim LG, Pao WK, Hamid NH, Tang TB
    Sensors (Basel), 2016 Jul 04;16(7).
    PMID: 27384567 DOI: 10.3390/s16071032
    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.
    Matched MeSH terms: Electric Capacitance
  10. Tawfikur Rahman, Motakabber, S.M.A., Ibrahimy, M.I.
    Scientific Research Journal, 2017;14(2):17-34.
    MyJurnal
    In recent years, the utility grid system is more essential for the power
    transmission and distribution system because it cannot produce harmful
    gases or no discharge waste in the environment. PWM based phase
    synchronous invert systems are generally utilised in the high efficiency
    energy supply, long distance and higher power quality. The inverter output
    voltage depends on the coupling transformer, input sources and invert
    controllers. An inverter using a three leg IGBT has been designed for utility
    grid and simulated by using MATLAB2014a. In this paper, both sides of
    the LCL filters are used for removing the DC ripple current, reducing the
    noise and synchronous the output phase between inverter and the utility
    grid. The PWM controller has created pulse signal to control the inverter,
    electronic switches and precisely synchronise with grid line frequency. In
    this system, the input DC voltage 500V, switching frequency 1.65 kHz, grid
    frequency 50Hz, 20 km feeder (resistance, inductance and capacitance per
    unit length, which are 0.1153, 1.05e-3 and 11.33e-09 ohms/km) with 30MW
    three phase load (active and inductive reactive power which are 30e6 W
    and 2e6 var) and also a balanced utility grid load of star configuration (00,
    1200, and 2400 degree) are considered in the design. On the other hand,
    three phase transformer consists of three signal phase transformers, normal
    power 100e3, magnetization resistance and inductance which are 500 pu and
    416.67pu are considered in this design. The system conversion efficiency
    is 99.94% and 99.96%, while the total THD are 0.06% on inverter side
    and 0.04% on grid side.
    Matched MeSH terms: Electric Capacitance
  11. Sing NB, Mostavan A, Hamzah E, Mantovani D, Hermawan H
    J Biomed Mater Res B Appl Biomater, 2015 Apr;103(3):572-7.
    PMID: 24954069 DOI: 10.1002/jbm.b.33242
    This article reports a degradation study that was done on stent prototypes made of biodegradable Fe35Mn alloy in a simulated human coronary arterial condition. The stent degradation was observed for a short-term period from 0.5 to 168 h, which simulates the early period of stenting procedure. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to quantify degradation rate and surface property of the stents. Results showed that signs of degradation were visible on both crimped and expanded stents after 1 h of test, mostly located on the stent's curvatures. The degradation rate of stent was higher compared to that of the original alloy, indicating the surface altering effect of stent fabrication processing to degradation. A single oxide layer was formed and detected as a porous structure with capacitive behavior. Expanded stents exhibited lower polarization resistance compared to the nonexpanded ones, indicating the cold work effect of expansion procedure to degradation.
    Matched MeSH terms: Electric Capacitance
  12. Iqbal A, Smida A, Saraereh OA, Alsafasfeh QH, Mallat NK, Lee BM
    Sensors (Basel), 2019 Mar 08;19(5).
    PMID: 30857265 DOI: 10.3390/s19051200
    A compact, cylindrical dielectric resonator antenna (CDRA), using radio frequency signals to identify different liquids is proposed in this paper. The proposed CDRA sensor is excited by a rectangular slot through a 3-mm-wide microstrip line. The rectangular slot has been used to excite the CDRA for H E M 11 mode at 5.25 GHz. Circuit model values (capacitance, inductance, resistance and transformer ratios) of the proposed CDRA are derived to show the true behaviour of the system. The proposed CDRA acts as a sensor due to the fact that different liquids have different dielectric permittivities and, hence, will be having different resonance frequencies. Two different types of CDRA sensors are designed and experimentally validated with four different liquids (Isopropyl, ethanol, methanol and water).
    Matched MeSH terms: Electric Capacitance
  13. Liew CW, Ramesh S
    Materials (Basel), 2014 May 21;7(5):4019-4033.
    PMID: 28788662 DOI: 10.3390/ma7054019
    Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF₆) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF₆) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10(-4) and (3.21 ± 0.01) × 10(-4) S∙cm(-1) were achieved with adulteration of 50 wt% of BmImPF₆ and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.
    Matched MeSH terms: Electric Capacitance
  14. Ng CL, Reaz MBI, Crespo ML, Cicuttin A, Chowdhury MEH
    Sci Rep, 2020 09 10;10(1):14891.
    PMID: 32913303 DOI: 10.1038/s41598-020-71709-0
    A capacitive electromyography (cEMG) biomedical sensor measures the EMG signal from human body through capacitive coupling methodology. It has the flexibility to be insulated by different types of materials. Each type of insulator will yield a unique skin-electrode capacitance which determine the performance of a cEMG biomedical sensor. Most of the insulator being explored are solid and non-breathable which cause perspiration in a long-term EMG measurement process. This research aims to explore the porous medical bandages such as micropore, gauze, and crepe bandage to be used as an insulator of a cEMG biomedical sensor. These materials are breathable and hypoallergenic. Their unique properties and characteristics have been reviewed respectively. A 50 Hz digital notch filter was developed and implemented in the EMG measurement system design to further enhance the performance of these porous medical bandage insulated cEMG biomedical sensors. A series of experimental verifications such as noise floor characterization, EMG signals measurement, and performance correlation were done on all these sensors. The micropore insulated cEMG biomedical sensor yielded the lowest noise floor amplitude of 2.44 mV and achieved the highest correlation coefficient result in comparison with the EMG signals captured by the conventional wet contact electrode.
    Matched MeSH terms: Electric Capacitance*
  15. Ng CL, Reaz MB
    Sensors (Basel), 2017 Mar 12;17(3).
    PMID: 28287493 DOI: 10.3390/s17030574
    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.
    Matched MeSH terms: Electric Capacitance
  16. Chong PL, Singh AK, Kok SL
    PLoS One, 2019;14(6):e0218758.
    PMID: 31237903 DOI: 10.1371/journal.pone.0218758
    Electrical energy can be harvested from the living plants as a new potential renewable energy source. Characterization of the electrical signal is needed to enable an optimum energy harvesting setup condition. In the present paper, an investigation is conducted to analyze the characteristic of Aloe Barbadensis Miller (Aloe Vera) leaves in terms of electrical energy generation under specific experimental setups. The experimental results show that 1111.55uW electrical power can be harvested from the Aloe Vera with 24 pairs of electrodes and this energy is capable to be stored in a capacitor. This energy has a high potential to be used to power up a low power consumption device.
    Matched MeSH terms: Electric Capacitance
  17. Aziz SB, Brza MA, Brevik I, Hamsan MH, Abdulwahid RT, Majid SR, et al.
    Polymers (Basel), 2020 Nov 17;12(11).
    PMID: 33212879 DOI: 10.3390/polym12112718
    In this work, plasticized polymer electrolyte films consisting of chitosan, ammonium nitrate (NH4NO3) and glycerol for utilization in energy storage devices was presented. Various microscopic, spectroscopic and electrochemical techniques were used to characterize the concerned electrolyte and the electrical double-layer capacitor (EDLC) assembly. The nature of complexation between the polymer electrolyte components was examined via X-ray diffraction analysis. In the morphological study, field emission scanning electron microscopy (FESEM) was used to investigate the impact of glycerol as a plasticizer on the morphology of films. The polymer electrolyte (conducting membrane) was found to have a conductivity of 3.21 × 10-3 S/cm. It is indicated that the number density (n), mobility (μ) and diffusion coefficient (D) of ions are increased with the glycerol amount. The mechanism of charge storing was clarified, which implies a non-Faradaic process. The voltage window of the polymer electrolyte is 2.32 V. It was proved that the ion is responsible for charge-carrying via measuring the transference number (TNM). It was also determined that the internal resistance of the EDLC assembly lay between 39 and 50 Ω. The parameters associated with the EDLC assembly are of great importance and the specific capacitance (Cspe) was determined to be almost constant over 1 to 1000 cycles with an average of 124 F/g. Other decisive parameters were found: energy density (18 Wh/kg) and power density (2700 W/kg).
    Matched MeSH terms: Electric Capacitance
  18. Jesudason CG
    Int J Mol Sci, 2009 May;10(5):2203-51.
    PMID: 19564949 DOI: 10.3390/ijms10052203
    This review is variously a presentation, reflection, synthesis and report with reference to more recent developments of an article - in a journal which has ceased publication - entitled "Some Electrode Theorems with Experimental Corroboration, Inclusive of the Ag/AgCl System" Internet Journal of Chemistry, (http://www.ijc.com), Special Issues: Vol. 2 Article 24 (1999). The results from new lemmas relating charge densities and capacitance in a metallic electrode in equilibrium with an ionic solution are used to explain the data and observed effects due to Esin, Markov, Grahame, Lang and Kohn. Size effects that vary the measured e.m.f. of electrodes due to changes in the electronic chemical potential are demonstrated in experiment and theory implying the need for standardization of electrodes with respect to geometry and size. The widely used Stern modification of the Gouy-Chapman theory is shown to be mostly inapplicable for many of the problems where it is employed. Practical consequences of the current development include the possibility of determining the elusive single-ion activity coefficients of solution ions directly from the expression given by a simplified capacitance theorem, the potential of zero charge and the determination of single ion concentrations of active species in the electrode reactions from cell e.m.f. measurements.
    Matched MeSH terms: Electric Capacitance
  19. B Aziz S, Brza MA, Brevik I, Hafiz MH, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Sep 16;12(9).
    PMID: 32947829 DOI: 10.3390/polym12092103
    This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device's performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.
    Matched MeSH terms: Electric Capacitance
  20. Chung HY, Pan GT, Hong ZY, Hsu CT, Chong S, Yang TC, et al.
    Molecules, 2020 Sep 04;25(18).
    PMID: 32899765 DOI: 10.3390/molecules25184050
    A series of heteroatom-containing porous carbons with high surface area and hierarchical porosity were successfully prepared by hydrothermal, chemical activation, and carbonization processes from soybean residues. The initial concentration of soybean residues has a significant impact on the textural and surface functional properties of the obtained biomass-derived porous carbons (BDPCs). SRAC5 sample with a BET surface area of 1945 m2 g-1 and a wide micro/mesopore size distribution, nitrogen content of 3.8 at %, and oxygen content of 15.8 at % presents the best electrochemical performance, reaching 489 F g-1 at 1 A g-1 in 6 M LiNO3 aqueous solution. A solid-state symmetric supercapacitor (SSC) device delivers a specific capacitance of 123 F g-1 at 1 A g-1 and a high energy density of 68.2 Wh kg-1 at a power density of 1 kW kg-1 with a wide voltage window of 2.0 V and maintains good cycling stability of 89.9% capacitance retention at 2A g-1 (over 5000 cycles). The outstanding electrochemical performances are ascribed to the synergistic effects of the high specific surface area, appropriate pore distribution, favorable heteroatom functional groups, and suitable electrolyte, which facilitates electrical double-layer and pseudocapacitive mechanisms for power and energy storage, respectively.
    Matched MeSH terms: Electric Capacitance*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links