Displaying publications 41 - 60 of 112 in total

Abstract:
Sort:
  1. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH
    J Control Release, 2014 May 10;181:11-21.
    PMID: 24593892 DOI: 10.1016/j.jconrel.2014.02.020
    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research.
    Matched MeSH terms: Fertilizers/analysis*
  2. Irfan SA, Razali R, KuShaari K, Mansor N, Azeem B, Ford Versypt AN
    J Control Release, 2018 02 10;271:45-54.
    PMID: 29274697 DOI: 10.1016/j.jconrel.2017.12.017
    Nutrients released into soils from uncoated fertilizer granules are lost continuously due to volatilization, leaching, denitrification, and surface run-off. These issues have caused economic loss due to low nutrient absorption efficiency and environmental pollution due to hazardous emissions and water eutrophication. Controlled-release fertilizers (CRFs) can change the release kinetics of the fertilizer nutrients through an abatement strategy to offset these issues by providing the fertilizer content in synchrony with the metabolic needs of the plants. Parametric analysis of release characteristics of CRFs is of paramount importance for the design and development of new CRFs. However, the experimental approaches are not only time consuming, but they are also cumbersome and expensive. Scientists have introduced mathematical modeling techniques to predict the release of nutrients from the CRFs to elucidate fundamental understanding of the dynamics of the release processes and to design new CRFs in a shorter time and with relatively lower cost. This paper reviews and critically analyzes the latest developments in the mathematical modeling and simulation techniques that have been reported for the characteristics and mechanisms of nutrient release from CRFs. The scope of this review includes the modeling and simulations techniques used for coated, controlled-release fertilizers.
    Matched MeSH terms: Fertilizers*
  3. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
    Matched MeSH terms: Fertilizers/microbiology
  4. Ho WM, Ang LH, Lee DK
    J Environ Sci (China), 2008;20(11):1341-7.
    PMID: 19202874
    The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated. A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium. Results showed that Pb was found in the root, stem, and seed capsule of kenaf but not in the leaf. Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb. In Pb-spiked treatments, roots accumulated more than 85% of total plant Pb which implies that kenaf root can be an important sink for bioavailable Pb. Scanning transmission electron microscope (STEM) X-ray microanalysis confirmed that electron-dense deposits located along cell walls of kenaf roots were Pb precipitates. The ability of kenaf to tolerate Pb and avoid phytotoxicity could be attributed to the immobilization of Pb in the roots and hence the restriction of upward movement (translocation factor < 1). With the application of fertilizer, kenaf was also found to have higher biomass and subsequently higher bioaccumulation capacity, indicating its suitability for phytoremediation of Pb-contaminated site.
    Matched MeSH terms: Fertilizers
  5. Padam BS, Tin HS, Chye FY, Abdullah MI
    J Food Sci Technol, 2014 Dec;51(12):3527-45.
    PMID: 25477622 DOI: 10.1007/s13197-012-0861-2
    Banana (Musaceae) is one of the world's most important fruit crops that is widely cultivated in tropical countries for its valuable applications in food industry. Its enormous by-products are an excellent source of highly valuable raw materials for other industries by recycling agricultural waste. This prevents an ultimate loss of huge amount of untapped biomass and environmental issues. This review discusses extensively the breakthrough in the utilization of banana by-products such as peels, leaves, pseudostem, stalk and inflorescence in various food and non-food applications serving as thickening agent, coloring and flavor, alternative source for macro and micronutrients, nutraceuticals, livestock feed, natural fibers, and sources of natural bioactive compounds and bio-fertilizers. Future prospects and challenges are the important key factors discussed in association to the sustainability and feasibility of utilizing these by-products. It is important that all available by-products be turned into highly commercial outputs in order to sustain this renewable resource and provide additional income to small scale farming industries without compromising its quality and safety in competing with other commercial products.
    Matched MeSH terms: Fertilizers
  6. Rathi BS, Kumar PS, Show PL
    J Hazard Mater, 2021 05 05;409:124413.
    PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413
    Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
    Matched MeSH terms: Fertilizers
  7. Saffree Jeffree M, Ismail N, Awang Lukman K
    J Occup Health, 2016 Sep 30;58(5):434-443.
    PMID: 27488035
    INTRODUCTION: Hearing impairment remains the main occupational health problem in the manufacturing industry, and its contributing factors have not been well controlled.

    METHODS: Unmatched case control and comparative studies were carried out among fertilizer factory workers in Sarawak with the aim of determining contributing factors for hearing impairment. Respondents consisted of 49 cases that were diagnosed from 2005 to 2008 with 98 controls from the same work places. Chi-square test and Mann-Whitney test were used in a univariate analysis to determine the association between hearing impairment and the contributing risks being studied.

    RESULTS: The results of the univariate analysis showed that hearing impairment was significantly (p<0.05) associated with older age, lower education level, high smoking dose, high occupational daily noise dose, longer duration of service, infrequent used of hearing protection device (HPD), and low perception of sound on HPD usage. Multivariate logistic regression of hearing impairment after controlling for age found the following five variables: occupational daily noise dose ≥50% (OR 3.48, 95% CI 1.36-8.89), ≥15 years of services (OR 2.92, 95% CI 1.16-7.33), infrequent use of HPD (OR 2.79, 95% CI 1.15-6.77), low perception of sound on HPD (POR 2.77, 95% CI 1.09-6.97), and smoking more than 20 packs per year (OR 4.71, 95% CI 1.13-19.68).

    DISCUSSION: In conclusion, high occupational noise exposure level, longer duration of service, low perception of sound on HPD, infrequent used of HPD, and smoking more than 20 packs per year were the contributing factors to hearing impairment, and appropriate intervention measures should be proposed and taken into considerations.

    Matched MeSH terms: Fertilizers
  8. Lim SL, Wu TY, Lim PN, Shak KP
    J Sci Food Agric, 2015 Apr;95(6):1143-56.
    PMID: 25130895 DOI: 10.1002/jsfa.6849
    Vermicomposting is a process in which earthworms are used to convert organic materials into humus-like material known as vermicompost. A number of researchers throughout the world have found that the nutrient profile in vermicompost is generally higher than traditional compost. In fact, vermicompost can enhance soil fertility physically, chemically and biologically. Physically, vermicompost-treated soil has better aeration, porosity, bulk density and water retention. Chemical properties such as pH, electrical conductivity and organic matter content are also improved for better crop yield. Nevertheless, enhanced plant growth could not be satisfactorily explained by improvements in the nutrient content of the soil, which means that other plant growth-influencing materials are available in vermicomposts. Although vermicomposts have been shown to improve plant growth significantly, the application of vermicomposts at high concentrations could impede growth due to the high concentrations of soluble salts available in vermicomposts. Therefore, vermicomposts should be applied at moderate concentrations in order to obtain maximum plant yield. This review paper discusses in detail the effects of vermicompost on soil fertility physically, chemically and biologically. Future prospects and economy on the use of organic fertilizers in the agricultural sector are also examined.
    Matched MeSH terms: Fertilizers*
  9. Lim PN, Wu TY, Sim EY, Lim SL
    J Sci Food Agric, 2011 Nov;91(14):2637-42.
    PMID: 21725978 DOI: 10.1002/jsfa.4504
    Soybean (Glycine max L.) is one the most commonly consumed legumes worldwide, with 200 million metric tons produced per year. However, the inedible soy husk would usually be removed during the process and the continuous generation of soybean husk may represent a major disposal problem for soybean processing industries. Thus, the main aim of the present study was to investigate the possibility to convert soybean husk (S) amended with market-rejected papaya (P) into vermicompost using Eudrilus eugeniae.
    Matched MeSH terms: Fertilizers/analysis*; Fertilizers/economics
  10. Sim EY, Wu TY
    J Sci Food Agric, 2010 Oct;90(13):2153-62.
    PMID: 20718020 DOI: 10.1002/jsfa.4127
    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW.
    Matched MeSH terms: Fertilizers/economics*
  11. Ahmad Rohi Ghazali, Maziani Abdullah, Asmah Hamid, Asmariah Ahmad, Tava Shelan Nagapan, Ismarulyusda Ishak, et al.
    MyJurnal
    Pesticides and chemical fertilizers are widely used in agriculture to increase crop productivity among farmers. However, exposure to pesticides will give potential risk to human health. The aim of this study was to analyze the frequency of micronucleus (MN) and binucleus (BNu) formation in buccal cells from farmers who were exposed to pesticides using the MN assay. Buccal swabs were collected from the farmers in Tanjung Karang (n = 32) and Kelantan (n = 43) using wooden tongue depressor. A structured questionnaire was used to obtain demographic data of the farmers. Cytogenetic analysis was carried out by Acridin Orange (AO) staining 0.0025% (w/v). The frequency of MN and BNu as the biomarkers for cytogenetic damage was observed by using a fluorescence microscope. Comparison of frequency of MN and BNu is conducted in two areas namely Tanjung Karang, Selangor and Kelantan because of the agricultural activity and the type of pesticides used are different. Results showed that the frequencies of both MN and BNu among farmers in Tanjung Karang were significantly higher (p < 0.05) compared to farmers in Kelantan. Meanwhile, for the socio-demographic factors (age, smoking status, working period), MN and BNu frequencies among farmers in Tanjung Karang were also significantly higher (p < 0.05) as compared to farmers in Kelantan. While in the aspect of pesticide exposure, the frequencies of MN and BNu showed no significant difference between the frequency of pesticide spraying (p > 0.05) and the practices of PPE (Personal Protective Equipment) (p > 0.05). This may suggests that cytogenetic changes were not influenced by these factors. In addition, correlation study shows positive correlation between the frequency of MN with the pesticide exposure of farmers in Tanjung Karang (p > 0.05, r = 0.015) and Kelantan (p > 0.05, r = 0.0158). Besides, the frequency of BNu also has a positive correlation with the pesticide exposure among farmers in Tanjung Karang (p > 0.05, r = 0.036) and farmers in Kelantan (p > 0.05, r = 0.013). Hence, this present study demonstrated that exposure to pesticides increased the formation of MN and BNu among farmers and the prolonged use of pesticides may induce genotoxicity and DNA damage to human
    Matched MeSH terms: Fertilizers
  12. Nita Salina Abu Bakar, Zal U’yun Wan Mahmood, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    Anthropogenic airborne depositions of 210Po,
    210Pb and 210Po/210Pb in the mosses and surface soils
    collected at the vicinity of a coal-fired power plant were studied. The purpose of the study was to
    determine activity concentrations of 210Po,
    210Pb and 210Po/210Pb for assessing their variation
    accumulation in the mosses and surface soils collected at the vicinity of a coal-fired power plant.
    Other purposes were to determine their concentration factor (CF) in relation to track the potential
    source of those radionuclides and to identify most suitable moss species as a biological indicator
    for atmospheric deposition contaminants. In this study, different species of moss Leucobryum
    aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in
    May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in
    Pontian, Johor. The activity concentrations of 210Po,
    210Pb and 210Po/210Pb in mosses were in the
    range of 76.81 ± 4.94 – 251.33 ± 16.33 Bq/kg dry wt., 54.37 ± 3.38 – 164.63 ± 11.64 Bq/kg dry wt.
    and 1.10 – 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil
    were 33.53 ± 2.10 – 179.67 ± 12.15 Bq/kg dry wt., 20.55 ± 1.33 – 106.62 ± 6.64 Bq/kg dry wt. and
    1.61 – 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more
    210Po and 210Pb, wide geographical distribution, most abundant and high CF, therefore, the
    findings can be concluded this species was the most suitable as a biological indicator for
    atmospheric deposition contaminants such as 210Po and 210Pb. Furthermore, it is clear the
    accumulation of 210Po and 210Pb in mosses might be supplied from various sources of atmospheric
    deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities,
    burned fuel fossil and forest; and other potential sources. Meanwhile, the
    Matched MeSH terms: Fertilizers
  13. Zal U’yun Wan Mahmood, Mei, Wo Yii, Abdul Kadir Ishak
    MyJurnal
    This study was performed to observe the variation in the distribution of 210Po,210Pb and 210Po/210Pb activity ratio throughtheir vertical profile of the sediment cores takenat surrounding Sungai Linggi estuary. Five sediment cores were takenin February 2011 and were cutto an intervalof 2 cm layer. Activity concentrations of 210Po and 210Pb were determined using alpha radiochemical analysis and gamma direct measurement, respectively. Generally, the measured activity of 210Po, 210Pb and 210Po/210Pbwere in the ranges of 22.73 –139.06 Bqkg-1dw., 37.88 –176.24 Bqkg-1dw.and 0.23 –1.34, respectively. The variation in the distribution profile for the radionuclides are believed to be influencedby human activities such as agriculture, fertilizer, vehicles, burned fuel fossil and forest, industrialand others via river input from land-base.Other factor is due to organic mattercontent played importantrole as the geochemical carrier to transportthose radionuclides at study area. It was provedthat hasa strong correlation between the radionuclide distribution and the sedimentcomposition of organic matter.Furthermore, in those rangesreflectedthat 210Pb activities were higher than210Po with an activity ratio average of 0.79. This is probably due to dramatic increase of excess 210Pb supplied from atmospheric deposition, in situ decay of 226Ra and as a result of diagenetic remolibilazationof 210Pbin deeper layesof the sediment column. Thus, thosefactors are majorcontributions on thevariation of 210Po and 210Pb in the sediment core at surrounding Sungai Linggi estuary.
    Matched MeSH terms: Fertilizers
  14. Ngalimat MS, Mohd Hata E, Zulperi D, Ismail SI, Ismail MR, Mohd Zainudin NAI, et al.
    Microorganisms, 2021 Mar 26;9(4).
    PMID: 33810209 DOI: 10.3390/microorganisms9040682
    As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
    Matched MeSH terms: Fertilizers
  15. Tang A, Haruna AO, Majid NMA, Jalloh MB
    Microorganisms, 2020 Mar 20;8(3).
    PMID: 32245141 DOI: 10.3390/microorganisms8030442
    In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
    Matched MeSH terms: Fertilizers
  16. Omar NF, Hassan SA, Yusoff UK, Abdullah NA, Wahab PE, Sinniah U
    Molecules, 2012;17(3):2378-87.
    PMID: 22370524 DOI: 10.3390/molecules17032378
    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.
    Matched MeSH terms: Fertilizers*
  17. Hassan SA, Mijin S, Yusoff UK, Ding P, Wahab PE
    Molecules, 2012 Jun 28;17(7):7843-53.
    PMID: 22743588 DOI: 10.3390/molecules17077843
    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.
    Matched MeSH terms: Fertilizers*
  18. Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS
    Molecules, 2018 Jun 04;23(6).
    PMID: 29867000 DOI: 10.3390/molecules23061345
    This project studied the effect of vermicompost application on the composition of bioactive anthocyanin and phenolic compounds, and the antioxidant activity of Clinacanthus nutans. The correlation between the bioactive constituents and antioxidant capacity was also evaluated. In this project, a field study was conducted using a randomized complete block design (RCBD) with four treatment groups, including control plants (CC), plants supplied with chemical fertilizer (CF), plants supplied with vermicompost (VC), and plants supplied with mixed fertilizer (MF). The leaves of C. nutans from all treatment groups were harvested, subjected to solvent extraction, and used for quantification of total anthocyanin content (TAC), total phenolic content (TPC), and total flavonoid content (TFC). The initial antioxidant activity of the extracts was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, as well as after two and four weeks of storage at -20 °C and 4 °C. Data analysis showed that CC plants contained the highest TAC (2180.14 ± 338.43 µg/g dry weight) and TFC (276.25 ± 3.09 mg QE/g dry weight). On the other hand, CF plants showed the highest TPC (181.53 ± 35.58 mg GAE/g dry weight). Moreover, we found that CC plants had the highest antioxidant potential against DPPH radicals whereas MF plants showed the lowest antioxidant potential. After four weeks of extract storage at -20 °C and 4 °C, the TPC, TFC, TAC, and antioxidant potential of the extracts decreased. Extracts from VC showed the lowest percentage of total phenolic and total flavonoid loss after extract storage at -20 °C and 4 °C compared with other plant extracts. At this juncture, it could be deduced that the application of vermicompost had little effect on the expression of phenolics, flavonoids, or anthocyanin in C. nutans. However, the extract from plants treated with vermicompost (VC and MF) showed better stability compared with CC and CF after extract storage at different temperatures.
    Matched MeSH terms: Fertilizers
  19. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Molecules, 2013 Sep 05;18(9):10973-88.
    PMID: 24013410 DOI: 10.3390/molecules180910973
    A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.
    Matched MeSH terms: Fertilizers*
  20. Panhwar QA, Naher UA, Radziah O, Shamshuddin J, Razi IM
    Molecules, 2015 Feb 20;20(3):3628-46.
    PMID: 25710843 DOI: 10.3390/molecules20033628
    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.
    Matched MeSH terms: Fertilizers*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links