Displaying publications 41 - 60 of 66 in total

Abstract:
Sort:
  1. Najib N, Bachok N, Arifin NM, Ishak A
    Sci Rep, 2014;4:4178.
    PMID: 24569547 DOI: 10.1038/srep04178
    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.
    Matched MeSH terms: Friction
  2. Siti Khuzaimah Soid, Anuar Ishak, Ioan Pop
    Sains Malaysiana, 2018;47:2907-2916.
    The problem of stagnation point flow over a stretching/shrinking sheet immersed in a micropolar fluid is analyzed
    numerically. The governing partial differential equations are transformed into a system of ordinary (similarity) differential
    equation and are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The
    effects of various parameters on the velocity and the angular velocity as well as the skin friction coefficient and the couple
    stress are shown in tables and graphs. The noticeable results are found that the micropolar and the slip parameters
    decrease the skin friction coefficient and the couple stress in the existence of magnetic field. Dual solutions appear for
    certain range of the shrinking strength. A stability analysis is performed to determine which one of the solutions is stable.
    Practical applications include polymer extrusion, where one deals with stretching of plastic sheets and in metallurgy
    that involves the cooling of continuous strips.
    Matched MeSH terms: Friction
  3. Federle W, Baumgartner W, Hölldobler B
    J Exp Biol, 2004 Jan;207(Pt 1):67-74.
    PMID: 14638834
    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
    Matched MeSH terms: Friction
  4. Ashrafi N, Azmah Hanim MA, Sarraf M, Sulaiman S, Hong TS
    Materials (Basel), 2020 Sep 15;13(18).
    PMID: 32942621 DOI: 10.3390/ma13184090
    Hybrid reinforcement's novel composite (Al-Fe3O4-SiC) via powder metallurgy method was successfully fabricated. In this study, the aim was to define the influence of SiC-Fe3O4 nanoparticles on microstructure, mechanical, tribology, and corrosion properties of the composite. Various researchers confirmed that aluminum matrix composite (AMC) is an excellent multifunctional lightweight material with remarkable properties. However, to improve the wear resistance in high-performance tribological application, hardening and developing corrosion resistance was needed; thus, an optimized hybrid reinforcement of particulates (SiC-Fe3O4) into an aluminum matrix was explored. Based on obtained results, the density and hardness were 2.69 g/cm3, 91 HV for Al-30Fe3O4-20SiC, after the sintering process. Coefficient of friction (COF) was decreased after adding Fe3O4 and SiC hybrid composite in tribology behaviors, and the lowest COF was 0.412 for Al-30Fe3O4-20SiC. The corrosion protection efficiency increased from 88.07%, 90.91%, and 99.83% for Al-30Fe3O4, Al-15Fe3O4-30SiC, and Al-30Fe3O4-20SiC samples, respectively. Hence, the addition of this reinforcement (Al-Fe3O4-SiC) to the composite shows a positive outcome toward corrosion resistance (lower corrosion rate), in order to increase the durability and life span of material during operation. The accomplished results indicated that, by increasing the weight percentage of SiC-Fe3O4, it had improved the mechanical properties, tribology, and corrosion resistance in aluminum matrix. After comparing all samples, we then selected Al-30Fe3O4-20SiC as an optimized composite.
    Matched MeSH terms: Friction
  5. Abdul Yamin NAA, Basaruddin KS, Abu Bakar S, Salleh AF, Mat Som MH, Yazid H, et al.
    J Healthc Eng, 2022;2022:7716821.
    PMID: 36275397 DOI: 10.1155/2022/7716821
    This study aims to investigate the gait stability response during incline and decline walking for various surface inclination angles in terms of the required coefficient of friction (RCOF), postural stability index (PSI), and center of pressure (COP)-center of mass (COM) distance. A customized platform with different surface inclinations (0°, 5°, 7.5°, and 10°) was designed. Twenty-three male volunteers participated by walking on an inclined platform for each inclination. The process was then repeated for declined platform as well. Qualysis motion capture system was used to capture and collect the trajectories motion of ten reflective markers that attached to the subjects before being exported to a visual three-dimensional (3D) software and executed in Matlab to obtain the RCOF, PSI, as well as dynamic PSI (DPSI) and COP-COM distance parameters. According to the result for incline walking, during initial contact, the RCOF was not affected to inclination. However, it was affected during peak ground reaction force (GRF) starting at 7.5° towards 10° for both walking conditions. The most affected PSI was found at anterior-posterior PSI (APSI) even as low as 5° inclination during both incline and decline walking. On the other hand, DPSI was not affected during both walking conditions. Furthermore, COP-COM distance was most affected during decline walking in anterior-posterior direction. The findings of this research indicate that in order to decrease the risk of falling and manage the inclination demand, a suitable walking strategy and improved safety measures should be applied during slope walking, particularly for decline and anterior-posterior orientations. This study also provides additional understanding on the best incline walking technique for secure and practical incline locomotion.
    Matched MeSH terms: Friction
  6. Nordin JA, Prajitno DH, Saidin S, Nur H, Hermawan H
    PMID: 25842138 DOI: 10.1016/j.msec.2015.03.019
    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis.
    Matched MeSH terms: Friction
  7. Ziaee M, Hejazi F
    PLoS One, 2023;18(8):e0290248.
    PMID: 37590241 DOI: 10.1371/journal.pone.0290248
    Coulomb friction is considered as a mechanical approach to diminish the structural responses during the excitations. However, in case of severe oscillations supplementary mechanisms are employed besides the friction to mitigate the destructive effects of the vibrations in structures. Therefore, the main goal of this research is to develop a new Hybrid System (HS) which is a parallel combination of Viscous Damping (VD) and Coulomb friction for structures subjected to dynamic load. To achieve this goal, the effect of viscous damper is embedded in the equation of motion which is proposed by Den Hartog for a Single-Degree-of-Freedom (SDOF) Coulomb system, and has been extensively implemented for past few decades. In the considered numerical example in this study, implementing the proposed HDM in system resulted in decreasing the maximum displacement in the range of 1% to 98% for different amounts of force amplitude and viscous damping ratios. Also, applying the proposed HDM increased the time lag for about up to 24% for the frequency ratios greater than 1. The developed hybridized system in this study can be utilised as new generation of Tuned Mass Damper (TMD) to improve their energy dissipating efficiency under severe excitations.
    Matched MeSH terms: Friction
  8. Abdal S, Hussain S, Siddique I, Ahmadian A, Ferrara M
    Sci Rep, 2021 Apr 08;11(1):7799.
    PMID: 33833251 DOI: 10.1038/s41598-021-86953-1
    It is a theoretical exportation for mass transpiration and thermal transportation of Casson nanofluid over an extending cylindrical surface. The Stagnation point flow through porous matrix is influenced by magnetic field of uniform strength. Appropriate similarity functions are availed to yield the transmuted system of leading differential equations. Existence for the solution of momentum equation is proved for various values of Casson parameter [Formula: see text], magnetic parameter M, porosity parameter [Formula: see text] and Reynolds number Re in two situations of mass transpiration (suction/injuction). The core interest for this study aroused to address some analytical aspects. Therefore, existence of solution is proved and uniqueness of this results is discussed with evaluation of bounds for existence of solution. Results for skin friction factor are established to attain accuracy for large injection values. Thermal and concentration profiles are delineated numerically by applying Runge-Kutta method and shooting technique. The flow speed retards against M, [Formula: see text] and [Formula: see text] for both situations of mass injection and suction. The thermal boundary layer improves with Brownian and thermopherotic diffusions.
    Matched MeSH terms: Friction
  9. Syed Baharom Syed Osman, Mohammad Nabil Fikri, Fahad Irfan Siddique
    MyJurnal
    The long term objective of this research is to look into the possibility of replacing soil strength parameters such as cohesion and angle of friction with electrical resistivity value for the purpose of computing among others, factor of safety in slopes or bearing capacity of soil. This paper however is limited to the investigation of correlation between electrical resistivity with some selected soil parameters. Electrical resistivity tests, using a basic multi meter, steel moulds and other related equipment, were conducted in the laboratory on soil samples with variations in soil type, compaction energy and moisture content. The samples consisted of predominantly clay, silt and sandy size particles and were compacted in a 100 x 100 mm square mould, while the corresponding electrical resistivity tests were carried out using the disc electrode method in accordance to BS 1377. The values of the electrical parameters such as voltage, current and resistance, with the corresponding value of soil parameters such as cohesion, angle of friction and moisture content, were measured and recorded. The results of the tests produced some initial crude relationships between electrical resistivity and the selected soil parameters. The strongest correlation between electrical resistivity and angle of internal friction, φ, was obtained from the clay size samples with R2 of 0.824, while the maximum correlation between electrical resistivity and moisture content again was obtained through the clay samples with R2 of 0.818. From the other results and graphs analyzed, some consistencies and specific trends of behaviour observed gave some early indications that a more detail and precise correlation between electrical resistivity and soil strength parameters could be very well possible in future.
    Matched MeSH terms: Friction
  10. Tamjidy M, Baharudin BTHT, Paslar S, Matori KA, Sulaiman S, Fadaeifard F
    Materials (Basel), 2017 May 15;10(5).
    PMID: 28772893 DOI: 10.3390/ma10050533
    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
    Matched MeSH terms: Friction
  11. Razzaq L, Mujtaba MA, Soudagar MEM, Ahmed W, Fayaz H, Bashir S, et al.
    J Environ Manage, 2021 Mar 15;282:111917.
    PMID: 33453625 DOI: 10.1016/j.jenvman.2020.111917
    This study investigated the engine performance and emission characteristics of biodiesel blends with combined Graphene oxide nanoplatelets (GNPs) and 10% v/v dimethyl carbonate (DMC) as fuel additives as well as analysed the tribological characteristics of those blends. 10% by volume DMC was mixed with 30% palm oil biodiesel blends with diesel. Three different concentrations (40, 80 and 120 ppm) of GNPs were added to these blends via the ultrasonication process to prepare the nanofuels. Sodium dodecyl sulphate (SDS) surfactant was added to improve the stability of these blends. GNPs were characterised using Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR), while the viscosity of nanofuels was investigated by rheometer. UV-spectrometry was used to determine the stability of these nanoplatelets. A ratio of 1:4 GNP: SDS was found to produce maximum stability in biodiesel. Performance and emissions characteristics of these nanofuels have been investigated in a four-stroke compression ignition engine. The maximum reduction in BSFC of 5.05% and the maximum BTE of 22.80% was for B30GNP40DMC10 compared to all other tested blends. A reduction in HC (25%) and CO (4.41%) were observed for B30DMC10, while a reduction in NOx of 3.65% was observed for B30GNP40DMC10. The diesel-biodiesel fuel blends with the addition of GNP exhibited a promising reduction in the average coefficient of friction 15.05%, 8.68% and 3.61% for 120, 80 and 40 ppm concentrations compared to B30. Thus, combined GNP and DMC showed excellent potential for utilisation in diesel engine operation.
    Matched MeSH terms: Friction
  12. Leman, A.M., Che Wan Izzudin, Md Zin Ibrahim, Dafit Feriyanto
    MyJurnal
    Brake pad apparatus is designed for help student and instructor in teaching and learning application. The objective
    of this research is to differentiate the pressure effect and braking temperature condition of different pad. This apparatus
    also aimed for learning the safety car and motorcycle braking system. This apparatus can to compare with theoretical
    calculation in order to approve that this apparatus is useful. The main concept in this apparatus is thermocouple use
    to detect the temperature gain while braking process. Speed motor controller used for set the angular velocity of the
    motor in braking process. Pressure applied at brake pedal detected by pressure gauge and data logger function as a
    connector. This apparatus also designed based on valid data for average of teenager in Malaysia which made on a
    sample university student. Result show that the apparatus can function effectively by defines the different temperature
    when applied the different pressure and different pad. Pad C shows the 880C for thermocouple 1 and 790C for
    thermocouple 2 at the 20 psi and infrared thermometer show 1130C for pad C. Graph from calculation shows that the
    pad A have 216.480C at 1000 rpm which have low temperature than pad B, C and D. high efficiency of friction and
    pressure applied will cause more heat generate than low coefficient of friction and pressure applied.
    Matched MeSH terms: Friction
  13. Zhongwei Liu, Jinsheng Jia, Wei Feng, Fengling Ma, Cuiying Zheng
    Sains Malaysiana, 2017;46:2101-2108.
    Shear strength is currently a significant parameter in the design of cemented sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare material without layers noumenon and layer condition. The experimental results showed good linearity in the curves of shear strength and pure grinding tests with correlation coefficients of nearly 97%. The friction coefficient was similar to that of C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were not added and the layer was paved immediately after 4 h of waiting interval.
    Matched MeSH terms: Friction
  14. Singh TS, Yusoff AH, Chian YK
    Spine (Phila Pa 1976), 2015 Aug 1;40(15):E866-72.
    PMID: 25996539 DOI: 10.1097/BRS.0000000000000985
    In vitro animal cadaveric study.
    Matched MeSH terms: Friction*
  15. Roberts AD, Brackley CA
    J Dent, 1996 Sep;24(5):339-43.
    PMID: 8916648
    OBJECTIVES: A survey of general dental practitioners and dental surgery assistants was carried out to ascertain their preferences and opinions on powder-free hydrogel-coated gloves compared with starch-powdered gloves. The aim was to relate the survey findings to laboratory measurements of the frictional characteristics of glove inner surfaces and their water absorptive capability.

    METHODS: The survey was carried out using a questionnaire given to local dental practitioners. Glove friction and water absorption measurements were made using specially designed equipment.

    RESULTS: The survey showed that a selected group of dentist and dental surgery assistants preferred hydrogel-coated gloves, particularly for damp donning, durability and long-term wear comfort. Laboratory measurements showed that the hydrogel coating gave a low friction coefficient against damp skin. The coating was durable, and absorbed water more readily than other treatments.

    CONCLUSION: A survey of dental practitioners and dental surgery assistants and laboratory measurements indicates that hydrogel-coated gloves have superior properties, and are preferred to other non-sterile glove types.

    Matched MeSH terms: Friction
  16. Chitturi V, Pedapati SR, Awang M
    Materials (Basel), 2019 Nov 26;12(23).
    PMID: 31779107 DOI: 10.3390/ma12233901
    Automobile, aerospace, and shipbuilding industries are looking for lightweight materials for cost effective manufacturing which demands the welding of dissimilar alloy materials. In this study, the effect of tool rotational speed, welding speed, tilt angle, and pin depth on the weld joint were investigated. Aluminum 5052 and 304 stainless-steel alloys were joined by friction stir welding in a lap configuration. The design of the experiments was based on Taguchi's orthogonal array for conducting the experiments with four factors and three levels for each factor. The microstructural analysis showed tunnel defects, micro voids, and cracks which formed with 0° and 1.5° tilt angles. The defects were eliminated when the tilt angle increased to 2.5° and a mixed stir zone was formed with intermetallic compounds. The presence of the intermetallic compounds increased with the increase in tilt angle and pin depth which further resulted in obtaining a defect-free weld. Hooks were formed on either side of the weld zone creating a mechanical link for the joint. A Vickers hardness value of HV 635.46 was achieved in the mixed stir zone with 1000 rpm, 20 mm/min, and 4.2 mm pin depth with a tilt angle of 2.5°, which increased by three times compared to the hardness of SS 304 steel. The maximum shear strength achieved with 800 rpm, 40 mm/min, and a 4.3 mm pin depth with a tilt angle of 2.5° was 3.18 kN.
    Matched MeSH terms: Friction
  17. Bayat M, Alarifi IM, Khalili AA, El-Bagory TMAA, Nguyen HM, Asadi A
    Sci Rep, 2019 Oct 25;9(1):15317.
    PMID: 31653877 DOI: 10.1038/s41598-019-51450-z
    A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.
    Matched MeSH terms: Friction
  18. Fasihah Zulkiflee, Ahmad Qushairi Mohamad, Sharidan Shafie, Arshad Khan
    MATEMATIKA, 2019;35(2):117-127.
    MyJurnal
    Free convection flow in a boundary layer region is a motion that results from the interaction of gravity with density differences within a fluid. These differences occur due to temperature or concentration gradients or due to their composition. Studies per- taining free convection flows of incompressible viscous fluids have received much attention in recent years both theoretically (exact or approximate solutions) and experimentally. The situation where the heat be transported to the convective fluid via a bounding sur- face having finite heat capacity is known as Newtonian heating (or conjugate convective flows). In this paper, the unsteady free convection flow of an incompressible viscous fluid between two parallel plates with Newtonian heating is studied. Appropriate non- dimensional variables are used to reduce the dimensional governing equations along with imposed initial and boundary conditions into dimensionless forms. The exact solutions for velocity and temperature are obtained using the Laplace transform technique. The corresponding expressions for skin friction and Nusselt number are also calculated. The graphical results are displayed to illustrate the influence of various embedded parameters such as Newtonian heating parameter and Grashof number. The results show that the effect of Newtonian heating parameter increases the Nusselt number but reduces the skin friction.
    Matched MeSH terms: Friction
  19. Muhammad Khairul Anuar Mohamed, Nor Aida Zuraimi Md Noar, Mohd Zuki Salleh, Anuar Ishak
    Sains Malaysiana, 2016;45:189-296.
    In this paper, the problem of free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation and constant wall temperature is investigated. The transformed boundary layer equations are solved numerically using finite difference scheme namely the Keller-box method. Numerical solutions were obtained for the reduced skin friction coefficient, Nusselt number and Sherwood number as well as the velocity and temperature profiles.The features of the flow and heat transfer characteristics for various values of the Brownian motion parameter, thermophoresis parameter, Lewis number and Eckert number were analyzed and discussed.
    Matched MeSH terms: Friction
  20. Norfifah Bachok, Anuar Ishak
    Sains Malaysiana, 2011;40:1297-1300.
    This paper presents a numerical analysis of a stagnation-point flow towards a nonlinearly stretching/shrinking sheet immersed in a viscous fluid. The stretching/shrinking velocity and the external flow velocity impinges normal to the stretching/shrinking sheet are assumed to be in the form U ~ xm, where m is a constant and x is the distance from the stagnation point. The governing partial differential equations are converted into ordinary ones by a similarity transformation, before being solved numerically. The variations of the skin friction coefficient and the heat transfer rate at the surface with the governing parameters are graphed and tabulated. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique for m > 1/3.
    Matched MeSH terms: Friction
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links