Displaying publications 41 - 60 of 68 in total

Abstract:
Sort:
  1. Ganesan J, George R, Lie-Injo LE
    PMID: 1025742
    A survey of abnormal haemoglobins and hereditary ovalocytosis was carried out among 629 Malays of Minangkabau descent in the Ulu Jempul District of Kuala Pilah, in the state of Negri Sembilan in West Malaysia.. Several abnormal haemoglobins were found with the following frequencies: Hb E 5.25%, Hb CoSp 2.38%, Hb A2 indonesia 0.80%, a fast moving Hb with a Mobility between A and Bart's 0.64% and Hb Q 0.16%. Hereditary ovalocytosis was found in 13.2% of these people. None of the persons with hereditary ovalocytosis had any evidence of haemolysis.
    Matched MeSH terms: Hemoglobins, Abnormal/analysis*
  2. Ong HC
    Acta Haematol., 1974;52(4):220-2.
    PMID: 4217527 DOI: 10.1159/000208244
    Haemoglobin E complicates 22.2°/o of pregnancy in Malaysian aborigines, the prevalence of variants associated with pregnancy being, 15.8% with Hb E trait abnormality, 3.9% with Hb E homozygous disease, and 2.5% with Hb E thalassaemia disease. Minor haematological abnormalities occur with the trait and homozygous conditions, though a more unfavourable response is expected with Hb E thalassaemia. Haemolysis is not a prominent feature and it is suggested that factors other than the haemoglobinopathic state
    probably accounts for any unfavourable response in pregnancy.
    Key Words: Haemoglobin E; Haemoglobinopathies; Haemolytic anaemias; Hb E thalassaemia; Malaysia; Pregnancy
    Study site: Hospital Orang Asli, Gombak, Selangor, Malaysia
    Matched MeSH terms: Hemoglobins, Abnormal*
  3. Welch QB, Lie-Injo Luan Eng, Bolton JM
    Hum. Hered., 1972;22(1):28-37.
    PMID: 4624781
    Matched MeSH terms: Hemoglobins, Abnormal/analysis
  4. Baig MA, Swamy KB, Baksh AD, Bahashwan A, Moshrif Y, Al Sawat A, et al.
    Indian J Pathol Microbiol, 2021 8 4;64(3):518-523.
    PMID: 34341263 DOI: 10.4103/IJPM.IJPM_709_20
    Background: : HPLC is one of the most important tools for accurate diagnosis of hemoglobinopathies and thalassemias. The advantage of the HPLC system is the excellent resolution, reproducibility &quantification of several normal and abnormal hemoglobin.

    Results: BIO RAD Variant II analyzer was used. Sickle cell syndromes including double heterozygous states accounted for 56.13% of total cases. HbSS, HbS/β0-th, HbS/β+-th β-thal trait comprises 29%, 6.5%, 5.1%& 10% of total cases respectively with mean MCV (fl) = 84, 68,71,64 respectively. The Mean HbA2 for β-thal trait, HbE trait &HbE-β thal showed 5.1 ± 1.1, 19 ± 9 & 24 ± 8 respectively. HbF is increased in 8.6% case (excluding SC syndromes & β-thal disorders), of these 5.5% were infants & 12 cases of Aplastic Anemias. Peak P2 >7% (2.4% cases) was seen in uncontrolled diabetes mellitus which on quantification showed HbA1C = 8 ± 2.1 mmol/L.

    Discussion: : HPLC in correlation with CBC parameters & family studies can aid in the diagnosis of majority of Hemoglobinopathies and thalassemic syndrome. The CBC & HPLC parameters of the present study are in good correlation with the research conducted by Tejinder Sing, RiouJ & Alla Joutovsky. Present study showed HPLC comprehensively characterizing HbS, A, A2, F, S, C, D from each other & was also applicable for the quantification of HbA1c for the monitoring of Diabetes Mellitus.

    Conclusion: : The merits of HPLC are small quantity of sample required, economical, less TAT, accurate categorization of HbS, HbA2 & F. But one has to be aware of the limitations and problems associated with this method due to variant hemoglobin within the same retention windows. The present findings show HPLC as an excellent & powerful diagnostic tool for the direct identification of hemoglobin variants with a high degree of precision in the quantification of normal and abnormal hemoglobin fractions.

    Matched MeSH terms: Hemoglobins, Abnormal/analysis*
  5. George E, Faridah K, Sivagengei K
    Singapore Med J, 1988 Feb;29(1):45-7.
    PMID: 3406766
    83 Malays with HbE beta-thalassaemia who were not transfusion dependent were investigated. 79 persons showed no beta0 formation indicating the predominant gene in Malays with HbE beta-thalassaemia was beta0. HbF assays showed levels that were similar to transfusion dependent patients. Further studies are necessary to determine the presence of the alpha, (alpha+) gene Interacting with HbE and beta0 to produce the milder phenotype of HbE beta-thalassaemla.
    Matched MeSH terms: Hemoglobins, Abnormal/metabolism*
  6. Alauddin H, Kamarudin K, Loong TY, Azma RZ, Ithnin A, Jalil N, et al.
    Hemoglobin, 2018 Jul;42(4):247-251.
    PMID: 30623696 DOI: 10.1080/03630269.2018.1528985
    Nondeletional α-globin mutations are known to cause more serious clinical effects than deletional ones. A rare IVS-I-1 (G>A) (HBA2: c.95+1G>A) donor splice site mutation interferes with normal splicing of pre mRNA and results in activation of a cryptic splice site as well as a frameshift mutation. Hb Adana [HBA2: c.179G>A (or HBA1)] is a highly unstable variant hemoglobin (Hb) resulting from a mutation at codon 59 on the HBA2 or HBA1 gene, recognized to cause severe α-thalassemia (α-thal) syndromes. We report a unique case of compound heterozygosity for these two mutations in a 9-year-old boy who presented with a Hb level of 5.3 g/dL and hepatomegaly at the age of 15 months. He required regular blood transfusions in view of a Hb level of <7.0 g/dL and failure to thrive. He had thalassemic red cell indices and peripheral blood film. The Hb electrophoresis only showed a raised Hb F level (3.3%) and a pre run peak but the Hb H inclusion test was negative. His father had thalassemic red cell indices but a normal Hb level. His mother had almost normal Hb levels and red cell indices. Hb Adana involving the HBA2 gene was detected by mutiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in the proband and his father. DNA sequencing of the HBA2 gene confirmed the IVS-I-1 mutation in the proband and his mother. This case highlighted the unique interaction of the IVS-I-1 mutation with Hb Adana in a young Malay boy presenting with transfusion-dependent α-thal.
    Matched MeSH terms: Hemoglobins, Abnormal/genetics*
  7. Hsu CH, Langdown J, Lynn R, Fisher C, Rose A, Proven M, et al.
    Hemoglobin, 2018 May;42(3):199-202.
    PMID: 30328734 DOI: 10.1080/03630269.2018.1513849
    We report a novel hemoglobin (Hb) variant with a β chain amino acid substitution at codon 78 (CTG>CCG) (HBB: c.236T>C), detected through prenatal screening via capillary electrophoresis (CE) in an otherwise healthy and asymptomatic 38-year-old female of Southeast Asian ancestry. The variant, named Hb Penang after the proband's Malaysian city of origin, underwent further characterization through high performance liquid chromatography (HPLC), reversed phase HPLC, Sanger sequencing, isopropanol stability testing and isoelectric focusing (IEF).
    Matched MeSH terms: Hemoglobins, Abnormal/genetics*
  8. Alauddin H, Jaapar NA, Azma RZ, Ithnin A, Razak NF, Loh CK, et al.
    Hemoglobin, 2014;38(4):277-81.
    PMID: 24829075 DOI: 10.3109/03630269.2014.916720
    Hb Adana [HBA2: c179G>A (or HBA1); p.Gly60Asp] is a rare hemoglobin (Hb) variant due to a mutation at codon 59 of the α2- or α1-globin gene resulting in a glycine to aspartic acid substitution. Two siblings with a unique coinheritance of Hb Adana and Hb Constant Spring (Hb CS, α142, Term→Gln, TAA>CAA; HBA2: c.427 T>C) (α(codon 59)α/α(CS)α), were compared phenotypically with another two siblings carrying the Hb Adana mutation and a 3.7 kb deletion (α(codon 59)α/-α(3.7)). Although they all had α-thalassemia intermedia (α-TI), the former were clinically more severe than the latter. The first pair of siblings presented at a much younger age than the second pair and showed lower Hb levels and significant extramedullay hemopoiesis. Another case of a hydropic fetus as a result of Hb H/Hb Adana is also described. Their clinical phenotypes and hematological parameters are all presented for comparison.
    Matched MeSH terms: Hemoglobins, Abnormal/genetics*
  9. Azma RZ, Othman A, Azman N, Alauddin H, Ithnin A, Yusof N, et al.
    Malays J Pathol, 2012 Jun;34(1):57-62.
    PMID: 22870600
    Haemoglobin Constant Spring (Hb CS) mutation and single gene deletions are common underlying genetic abnormalities for alpha thalassaemias. Co-inheritance of deletional and non-deletional alpha (alpha) thalassaemias may result in various thalassaemia syndromes. Concomitant co-inheritance with beta (beta) and delta (delta) gene abnormalities would result in improved clinical phenotype. We report here a 33-year-old male patient who was admitted with dengue haemorrhagic fever, with a background history of Grave's disease, incidentally noted to have mild hypochromic microcytic red cell indices. Physical examination revealed no thalassaemic features or hepatosplenomegaly. His full blood picture showed hypochromic microcytic red cells with normal haemoglobin (Hb) level. Quantitation of Hb using high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) revealed raised Hb F, normal Hb A2 and Hb A levels. There was also small peak of Hb CS noted in CE. H inclusions was negative. Kleihauer test was positive with heterocellular distribution of Hb F among the red cells. DNA analysis for alpha globin gene mutations showed a single -alpha(-3.7) deletion and Hb CS mutation. These findings were suggestive of compound heterozygosity of Hb CS and a single -alpha(-3.7) deletion with a concomitant heterozygous deltabeta thalassaemia. Co-inheritance of Hb CS and a single -alpha(-3.7) deletion is expected to result at the very least in a clinical phenotype similar to that of two alpha genes deletion. However we demonstrate here a phenotypic modification of alpha thalassemia presumptively as a result of co-inheritance with deltabeta chain abnormality as suggested by the high Hb F level.
    Matched MeSH terms: Hemoglobins, Abnormal/metabolism*; Hemoglobins, Abnormal/chemistry
  10. Tan, J. A. M. A., George, E., Lim, E. J., Zakaria, Z., Hassan, R., Wee, Y. C., et al.
    MyJurnal
    Objectives: This study aimed to evaluate the UBI MAGIWELTM ζ-GLOBIN ELISA Kit for the presumptive diagnosis of αo-thalassaemia. The ELISA results obtained were confirmed by molecular characterisation of αo-thalassaemia using a Duplex-PCR. Methods: Routine peripheral blood counts and red cell indices were determined in 94 blood samples sent for Hb analysis. Hb subtypes were quantified by high performance liquid chromatography (HPLC) and Hb electrophoresis conducted on agarose gel at pH 8.5. Zeta-globin chain levels were determined using the UBI MAGIWELTM ζ-GLOBIN ELISA Kit. Molecular analysis was performed using a duplex-PCR which simultaneously amplifies
    a normal 136 bp sequence between the ψα−α2-globin genes and a 730 bp Southeast Asian deletion-specific sequence (–SEA) between the ψα2−θ1-globin genes. Results: Using the ELISA assay kit, 20 blood samples were presumptively identified as α-thalassaemia carriers from elevated ζ-globin chains (OD>0.3) while the remaining 74 blood samples showed OD
    Matched MeSH terms: Hemoglobins, Abnormal
  11. Irmi Elfina, R., Ezalia, E., Elizabeth, G., Wan Hayati, M.Y, Norhanim, A., Wahidah, A., et al.
    Medicine & Health, 2014;9(1):44-52.
    MyJurnal
    Thalassaemia screening programme has been conducted in Malaysia since 2004. The aim of the programme was to reduce the burden of the disease by identifying thalassaemia carriers. However, the response towards the screening activities was unsatisfactory as there was lack of public awareness against the importance of thalassaemia screening. An alternative approach is to screen blood donors. The purpose of this study was to observe the prevalence of thalassaemia carriers among healthy blood donors. Seven hundred and thirty eight healthy blood donors were screened in Hospital Tengku Ampuan Rahimah, Klang from July to September 2010 using cation-exchange high performance liquid chromatography (HPLC). Cases with haemoglobin variants were further analyzed by gel electrophoresis at alkaline pH. Result shows that the blood donors consisted of 413 Malays (56%), 162 Indians (22%), 148 Chinese (20%) and 15 others (2%). There were 19 (2.6%) individuals with haemoglobin E trait, six (0.8%) with co-inheritance of haemoglobin E and αα- thalassaemia and five (0.7%) with β-thalassaemia trait. Haemoglobin Constant Spring and haemoglobin A2 prime were observed in two (0.3%); and Haemoglobin Lepore and alpha chain variant in one (0.2%). αα-thalassaemia and normal haemoglobin A2 β-thalassaemia could not be excluded in 190 cases (26%), as they required deoxyribonucleic acid (DNA) studies for identification. Thalassaemia screening in blood donors is more feasible and effective. Therefore, a wider scale population screening including blood donors could benefit the existing thalassaemia screening programme in Malaysia.
    Matched MeSH terms: Hemoglobins, Abnormal
  12. Nur Hidayah Muhamad Yasin, Majdan Ramli, Ilunihayati Ibrahim, Rosnah Bahar, Noraesah Mahmud, Siti Shahrum Muhamed Said, et al.
    MyJurnal
    Haemoglobin E (Hb E) is a variant of structurally abnormal haemoglobin that can be found very commonly in the Asian countries particularly the Southeast Asian [1]. [H1] Alpha thalassaemia is a red cell disorder which is caused by deletion or mutation of one or more of the four alpha globin genes leading to absence or decrease in production of alpha globin peptides [2]. This disorder is far more common in South East Asian regions and in Malaysia itself, and the gene frequency is about 4.1% [2]. The interactions of Hb E and alpha thalassaemia are evident in Kelantan which is bordered by southern Thailand. Using capillary electrophoresis (CE), a reduction of Hb E level is noticed as compared to Hb E heterozygotes. DNA analysis should be done to determine the presence of concurrent alpha thalassaemia variant. This study was done to evaluate haematological parameters using automated blood counters, morphology of red cells, Hb separation and quantitation of Hb fractions using CE and molecular analysis for alpha thalassemia. The study also aimed to discover cut off point of Hb E level in heterozygous Hb E patients with concurrent deletional alpha thalassaemia by CE.
    Matched MeSH terms: Hemoglobins, Abnormal
  13. Azma RZ, Ainoon O, Hafiza A, Azlin I, Noor Farisah AR, Nor Hidayati S, et al.
    Malays J Pathol, 2014 Apr;36(1):27-32.
    PMID: 24763232 MyJurnal
    Alpha (Α) thalassaemia is the most common inherited disorder in Malaysia. The clinical severity is dependant on the number of Α genes involved. Full blood count (FBC) and haemoglobin (Hb) analysis using either gel electrophoresis, high performance liquid chromatography (HPLC) or capillary zone electrophoresis (CE) are unable to detect definitively alpha thalassaemia carriers. Definitive diagnosis of Α-thalassaemias requires molecular analysis and methods of detecting both common deletional and non-deletional molecular abnormailities are easily performed in any laboratory involved in molecular diagnostics. We carried out a retrospective analysis of 1623 cases referred to our laboratory in Universiti Kebangsaan Malaysia Medical Centre (UKMMC) for the diagnosis of Α-thalassaemia during the period October 2001 to December 2012. We examined the frequency of different types of alpha gene abnormalities and their haematologic features. Molecular diagnosis was made using a combination of multiplex polymerase reaction (PCR) and real time PCR to detect deletional and non-deletional alpha genes relevant to southeast Asian population. Genetic analysis confirmed the diagnosis of Α-thalassaemias in 736 cases. Majority of the cases were Chinese (53.1%) followed by Malays (44.2%), and Indians (2.7%). The most common gene abnormality was ΑΑ/--(SEA) (64.0%) followed by ΑΑ/-Α(3.7) (19.8%), -Α(3.7) /--(SEA) (6.9%), ΑΑ/ΑΑCS (3.0%), --(SEA)/--(SEA) (1.2%), -Α(3.7)/-Α(3.7) (1.1%), ΑΑ/-Α(4.2) (0.7%), -Α(4.2)/--(SEA (0.7%), -Α(3.7)/-Α(4.2) (0.5%), ΑΑ(CS)/-- SEA) (0.4%), ΑΑ(CS)/ΑΑ(Cd59) (0.4%), ΑΑ(CS)/ΑΑ(CS) (0.4%), -Α(3.7)/ΑΑ(Cd59) (0.3%), ΑΑ/ΑΑ(Cd59) (0.1%), ΑΑ(Cd59)/ ΑΑ(IVS I-1) (0.1%), -Α(3.7)/ΑΑ(CS) (0.1%) and --(SEA) /ΑΑ(Cd59) (0.1%). This data indicates that the molecular abnormalities of Α-thalassaemia in the Malaysian population is heterogenous. Although Α-gene deletion is the most common cause, non-deletional Α-gene abnormalities are not uncommon and at least 3 different mutations exist. Establishment of rapid and easy molecular techniques is important for definitive diagnosis of alpha thalassaemia, an important prerequisite for genetic counselling to prevent its deleterious complications.
    Matched MeSH terms: Hemoglobins, Abnormal/genetics*
  14. Sudha V, Bairy KL, Shashikiran U, Sachidananda A, Jayaprakash B, Shalini S
    Med J Malaysia, 2005 Jun;60(2):204-11.
    PMID: 16114162
    OBJECTIVE AND STUDY DESIGN: A nonrandomized open labeled clinical trial to evaluate the efficacy and tolerability of Dianex (a poly herbal formulation developed by Apex Laboratories [PVT] Chennai, Tamil Nadu, India) in type 2 diabetes mellitus was carried out during a 6-month period.
    SETTING/LOCATION: This study was conducted in TMA Pai Hospital, Udupi, South India.
    SUBJECTS: A total of 40 patients were recruited for this study. Three patients dropped out of the study leaving a total of 37 patients (11 for monotherapy and 26 for add on therapy).
    OUTCOME MEASURES: Eighteen (18) clinical variables were investigated, including liver enzymes, kidney function tests, hematologic parameters, blood glucose, and insulin and lipid profiles.
    RESULTS: at the end of 12 weeks it was found that there was a significant decrease in the level of glycated hemoglobin, fasting plasma insulin level, insulin resistance, and systolic and diastolic blood pressure. At the end of 24 weeks results were similar to those at 12 weeks. Dianex did not alter the liver function tests, hematological parameters, or kidney function tests.
    CONCLUSION: In this preliminary study, Dainex is found to be an effective adjuvant drug with either oral antidiabetic agents or insulin that can be used in the control of blood sugars in diabetic patients. Dianex is a safe drug that does not cause any clinical, hematological or biochemical alteration in major organ systems.
    Matched MeSH terms: Hemoglobins, Abnormal/metabolism
  15. Lie-Injo LE, Herrera AR, Lebo RV, Hassan K, Lopez CG
    Am J Hematol, 1985 Mar;18(3):289-96.
    PMID: 2983536
    Restriction enzyme analysis of the alpha and zeta globin genes was carried out in four cases of Hb Bart's hydrops fetalis, in three patients with Hb H disease without Hb CoSp, in three patients with Hb H disease with Hb CoSp, in 47 individuals with alpha thalassemia trait, and in 47 normal individuals. All four cases of Hb Bart's hydrops fetalis resulted from deletions of alpha 1 and alpha 2 globin genes which did not extend to the psi zeta 1 and zeta 2 globin genes. The same type of deletion was observed in alpha thal1 carriers, but two newborns (one Malay and one of Chinese extraction) had a nondeletion type of alpha thal1 which was confirmed by quantitative alpha globin gene analysis. In addition, two other newborns diagnosed as alpha thal1 trait carriers (one Malay, one Chinese) were shown to have a deletion of both alpha globin genes by quantitative alpha globin gene analysis, but further testing with zeta globin gene probe failed to reveal an abnormal fragment length characteristic of an alpha globin gene deletion. We believe that this last condition is due to a large deletion which includes all alpha globin genes and all zeta globin genes on the same chromosome. On another front, Bgl II restriction analysis of all four Hb Bart's hydrops fetalis cases and the alpha thal1 trait carriers showed a 10.5-kb Bgl II restriction fragment, in the hydrops fetalis as a single band, while in the carriers this 10.5-kb fragment was accompanied by the usual normal 12.5-kb and 11.3-kb fragments. We report that this 10.5-kb fragment, previously thought to be specific for the Southeast Asian alpha thal1 gene deletion, is also common in normal individuals. Nevertheless, digestion with other enzymes can clearly differentiate the alpha thal1 and normal genotypes. We distinguish the findings in the alpha thalassemias from the extensive DNA polymorphism in the region of the alpha and zeta globin genes.
    Matched MeSH terms: Hemoglobins, Abnormal/genetics
  16. Lie-Injo LE, Ganesan J, Clegg JB, Weatherall DJ
    Blood, 1974 Feb;43(2):251-9.
    PMID: 4810076
    Matched MeSH terms: Hemoglobins, Abnormal/analysis*
  17. Lie-Injo LE, Lopez CG, Lopes M
    Acta Haematol., 1971;46(2):106-20.
    PMID: 4331171 DOI: 10.1159/000208565
    A study of 23 patients with Hb H disease and their 82 relatives in 17 families showed that 2 types of this condition exist. One is associated with the presence of a small slow-moving component, which we tentatively called the X component and which was invariably present in one parent. Some siblings also had it. The other type was not associated with this component. Two patients without X component had a newborn with Bart’s haemoglobin without X component. None of the parents of 20 newborns with Hb Bart’s without the X component had the X component. It was present in only one parent of each of 2 newborns with Hb Bart’s and the X component. They are thought to represent Hb H disease in the newborn period. We suggest that at least 3 abnormal genes may lead to Hb H disease, which results when 2 of the 3 combine. Severity of clinical and haematological symptoms depends upon which abnormal gene is present and which 2 are involved in any particular combination.
    Key Words: a-Thalassaemia; Haemoglobin Bart’s; Haemoglobin H disease; Haemoglobinopathies
    Matched MeSH terms: Hemoglobins, Abnormal/analysis*
  18. Lopez CG, Lie-Injo Luan Eng
    Hum. Hered., 1971;21(2):185-91.
    PMID: 5127409
    Matched MeSH terms: Hemoglobins, Abnormal/analysis*
  19. Lie-Injo LE, Virik HK, Lim PW, Lie AK, Ganesan J
    Acta Haematol., 1977;58(3):152-60.
    PMID: 409030 DOI: 10.1159/000207822
    A study was carried out of 332 babies suffering from severe neonatal jaundice who were admitted to the General Hospital, Kuala Lumpar, Malaysia. Of the 332 neonates, 51 were premature and 281 were full-term babies, 178 (110 Chinese, 58 Malay, 9 Indian and 1 European-Pakistani) had bilirubin levels of 20 mg% or higher, requiring exchange blood transfusion. Of the Chinese neonates, 23 (20.9%) had G6PD deficiency, 9 (8.2%) had Hb Bart's and 2 (1.8%) had an abnormal haemoglobin, one Hb Q and one fetal variant. Among the Malay infants, 10 (17.2%) had G6PD deficiency, 7 (12.1%) had Hb Bart's and 10 (17.2%) had abnormal haemoglobins (four had Hb E trait, one had Hb K and Bart's in addition to Hb E, three had Hb CoSp with Hb Bart's, one had Hb Q and one Hb Tak). One of the nine Indian neonates had G6PD deficiency and one had Hb S trait. The one European-Pakistani baby was a carrier of Hb D Punjab. In addition to G6PD deficiency, abnormal haemoglobins seem to have contributed to the high incidence of severe neonatal jaundice in Malaysia. The mean activities of GP, GR and GR after stimulation with FAD were higher, while the mean activity of PK and mean level of reduced glutathione were lower than in normal cord bloods. The percent increase of GR after FAD stimulation was significantly lower; fewer in this group had increases above 20% than in normal cord blood. The possible significance of the findings is discussed.
    Matched MeSH terms: Hemoglobins, Abnormal/analysis
  20. Luan Eng LI, Wiltshire BG, Lehmann H
    Biochim. Biophys. Acta, 1973 Oct 18;322(2):224-30.
    PMID: 4765089
    Matched MeSH terms: Hemoglobins, Abnormal/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links