Displaying publications 41 - 60 of 737 in total

Abstract:
Sort:
  1. Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, et al.
    Sci Rep, 2020 09 15;10(1):15110.
    PMID: 32934328 DOI: 10.1038/s41598-020-72118-z
    3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride 
    Matched MeSH terms: Hot Temperature*
  2. Wong RS, Alias NNM, Ong EBB, Liew MWO
    Methods Mol Biol, 2023;2617:189-200.
    PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13
    Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
    Matched MeSH terms: Hot Temperature*
  3. Wong LP, Alias H, Aghamohammadi N, Aghazadeh S, Nik Sulaiman NM
    Biomed Environ Sci, 2018 Jul;31(7):545-550.
    PMID: 30145991 DOI: 10.3967/bes2018.074
    Matched MeSH terms: Hot Temperature*
  4. Wong LP, Alias H, Aghamohammadi N, Nik Sulaiman NM
    Biomed Environ Sci, 2018 09;31(9):705-711.
    PMID: 30369349 DOI: 10.3967/bes2018.095
    Matched MeSH terms: Hot Temperature*
  5. Wong FC, Chai TT, Xiao J
    Crit Rev Food Sci Nutr, 2019;59(6):947-952.
    PMID: 29787299 DOI: 10.1080/10408398.2018.1479681
    In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
    Matched MeSH terms: Hot Temperature*
  6. Wong CL, Tan YN, Mohamed AR
    J Environ Manage, 2011 Jul;92(7):1669-80.
    PMID: 21450395 DOI: 10.1016/j.jenvman.2011.03.006
    Titania nanotubes are gaining prominence in photocatalysis, owing to their excellent physical and chemical properties such as high surface area, excellent photocatalytic activity, and widespread availability. They are easily produced by a simple and effective hydrothermal method under mild temperature and pressure conditions. This paper reviews and analyzes the mechanism of titania nanotube formation by hydrothermal treatment. It further examines the parameters that affect the formation of titania nanotubes, such as starting material, sonication pretreatment, hydrothermal temperature, washing process, and calcination process. Finally, the effects of the presence of dopants on the formation of titania nanotubes are analyzed.
    Matched MeSH terms: Hot Temperature
  7. Willmott AGB, Hayes M, Waldock KAM, Relf RL, Watkins ER, James CA, et al.
    J Sports Sci, 2017 Nov;35(22):2249-2256.
    PMID: 27935427 DOI: 10.1080/02640414.2016.1265142
    Multistage, ultra-endurance events in hot, humid conditions necessitate thermal adaptation, often achieved through short term heat acclimation (STHA), to improve performance by reducing thermoregulatory strain and perceptions of heat stress. This study investigated the physiological, perceptual and immunological responses to STHA prior to the Marathon des Sables. Eight athletes (age 42 ± 4 years and body mass 81.9 ± 15.0 kg) completed 4 days of controlled hyperthermia STHA (60 min·day‒1, 45°C and 30% relative humidity). Pre, during and post sessions, physiological and perceptual measures were recorded. Immunological measures were recorded pre-post sessions 1 and 4. STHA improved thermal comfort (P = 0.02), sensation (P = 0.03) and perceived exertion (P = 0.04). A dissociated relationship between perceptual fatigue and Tre was evident after STHA, with reductions in perceived Physical (P = 0.04) and General (P = 0.04) fatigue. Exercising Tre and HR did not change (P > 0.05) however, sweat rate increased 14% (P = 0.02). No changes were found in white blood cell counts or content (P > 0.05). Four days of STHA facilitates effective perceptual adaptations, without compromising immune status prior to an ultra-endurance race in heat stress. A greater physiological strain is required to confer optimal physiological adaptations.
    Matched MeSH terms: Hot Temperature*
  8. Wijayanto T, Wakabayashi H, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):491-500.
    PMID: 20824480 DOI: 10.1007/s00484-010-0358-5
    The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m(-2) h(-1)) and Japanese (83.2 ± 6.4 g m(-2) h(-1)) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.
    Matched MeSH terms: Hot Temperature/adverse effects
  9. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Hot Temperature
  10. Wan Saidatul, S.W.K., Noriham, A., Zainal, S., Khairusy, S.Z., Nurain, A.
    MyJurnal
    In the last decade, non-thermal processing for inactivating microorganisms has been developed in response to the worldwide interest for more fresh and improved quality of food products. Winter melon is a very perishable fruit, hence, processing into puree is a necessity. However application of heat in the production of puree could affect the nutritional values, thus, application of non thermal treatment in combination with preservation method is significant for this fruit. This study was conducted to evaluate the effect of non-thermal processing in combining with preservation method on antioxidant activity, level of key antioxidant groups (total phenolic and ascorbic acid content) and the color of winter melon puree. Total phenolic content (TPC) was measured using Folin-Ciocalteu reagent. Ascorbic acid (AA) was determined using 2,6-dichlorophenol-indophenol titration method. Antioxidant activity were determined using four antioxidant assays namely Ferric Reducing Antioxidant Potential (FRAP), Oxygen Radical Absorbance Capacity (ORAC), 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and β-Carotene Bleaching Assays. For the TPC, puree with pH 3 (28.5±1.3 GAE/g fresh weight) exhibited high in TPC as compared to puree with pH 3.5 and unprocessed puree. In contrast, unprocessed puree contains significantly high ascorbic acid (AA) content (35.9 ± 1.8 mg/100 g fresh mass) as compared to pH 3.0 and pH 3.5 purees. In general, antioxidant activity for all assays of pH 3.0 and pH 3.5 purees were significantly higher (p
    Matched MeSH terms: Hot Temperature
  11. Wan Ishak, W.I., Hudzari, R.M., Tan, M.Y.
    MyJurnal
    Vapour pressure deficit (VPD) analysis introduces an approach to develop a better basis for the control of the environment of lowland greenhouses in Malaysia. The study of vapour pressure deficit (VPD) is to show air moisture conditions for plant production while taking into account different temperature levels. The purpose of this project is to develop a real-time automatic temperature and relative humidity control system in the lowland tropical greenhouse using a PIC16f876A microcontroller. The controller will then be used to monitor the temperature, relative humidity and VPD in the planting of Chili Kulai (Titisan 15). The fertigation system was introduced to the greenhouse to fertilize and irrigate the plant as well as to provide moisture to the environment. A swamp cooler was used to bring down the temperature and increase moisture content in the greenhouse. Ventilators were installed to remove the heat in the greenhouse. The study was carried out in an experimental greenhouse located at the Institute of Advanced Technology, Universiti Putra Malaysia (UPM).
    Matched MeSH terms: Hot Temperature
  12. Wan Fadzlina WM, Wan Mohd Nazaruddin WH, Rhendra Hardy MZ
    Malays J Med Sci, 2016 Mar;23(2):28-37.
    PMID: 27547112 MyJurnal
    Inadvertent perioperative hypothermia (IPH) is a common problem, despite advancements in a variety of warming systems. The use of a resistive heating blanket (RHB) is a common but costly approach to patient warming. We have introduced the use of a heat-band in our centre as a cost-effective alternative to the RHB for patient warming. The efficacy of the heat-band in preventing IPH during laparotomy for gynaecological surgeries was compared with that of the RHB.
    Matched MeSH terms: Hot Temperature
  13. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    PMID: 24490869 DOI: 10.1186/1880-6805-33-5
    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat.
    Matched MeSH terms: Hot Temperature
  14. Wakabayashi H, Wijayanto T, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):509-17.
    PMID: 20949285 DOI: 10.1007/s00484-010-0374-5
    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature (T(re)) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T(re) in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T(re).
    Matched MeSH terms: Hot Temperature/adverse effects
  15. Wai WW, Alkarkhi AF, Easa AM
    J Food Sci, 2009 Oct;74(8):C637-41.
    PMID: 19799660 DOI: 10.1111/j.1750-3841.2009.01331.x
    Response surface methodology (RSM) was carried out to study the effect of temperature, pH, and heating time as input variables on the yield and degree of esterification (DE) as the output (responses). The results showed that yield and DE of extracted pectin ranged from 2.27% to 9.35% (w/w, based on dry weight of durian rind) and 47.66% to 68.6%, respectively. The results also showed that a 2nd-order model adequately fitted the experimental data for the yield and DE. Optimum condition for maximum yield and DE was achieved at 85 degrees C, a time of either 4 or 1 h, and a pH of 2 or 2.5.
    Matched MeSH terms: Hot Temperature
  16. WHITTOW GC
    Med J Malaya, 1956 Dec;11(2):126-33.
    PMID: 13417936
    Matched MeSH terms: Hot Temperature*
  17. Vidyadaran MK, King AS, Kassim H
    Avian Pathol, 1990 Jan;19(1):51-8.
    PMID: 18679913
    A stereological comparison has been made of the structure of the lungs of the adult female domestic fowl and its wild progenitor the Red Jungle Fowl. The volume of the lung per unit body weight of the domestic bird is between 20 and 33% smaller than that of the wild bird. The domestic fowl has partly compensated for this by increasing the surface area for gas exchange per unit volume of exchange tissue. However, the blood-gas tissue barrier is about 28% thicker in the domestic fowl than in the Red Jungle Fowl, and this has led to a 25% lower anatomical diffusing capacity for oxygen of the blood-gas tissue barrier per unit body weight in the domestic fowl. These structural characteristics may make the modern domestic fowl vulnerable to stress factors such as altitude, cold, heat or air pollution by predisposing to hypoxaemia and perhaps thence to ascites.
    Matched MeSH terms: Hot Temperature
  18. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jun;80(6):516-20.
    PMID: 18414763 DOI: 10.1007/s00128-008-9413-x
    A study was conducted to determine the suitability of using selected aquatic dipterian larvae for biomonitoring bioassays. The organisms included a member of the biting midge family that was identified as Culicoides furens and a member of the non-biting midge family, identified as Chironomus plumosus. Median lethal toxicity tests were conducted to observe the variation between metal sensitivities between the two larval forms and how variations in temperature could affect the experimental setup. Nine heavy metals were used in the study. It was observed that the 96 h LC(50) (in mg/L) for the different metals was found to be Zn-16.21 (18.55 +/- 13.87); Cr-0.96 (1.08 +/- 0.84); Ag-4.22 (6.87 +/- 1.57); Ni-0.42 (0.59 +/- 0.25); Hg-0.42 (0.59 +/- 0.25); Pb-16.21 (18.31 +/- 14.11); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (7.19 +/- 1.25); Cd-0.42 (0.59 +/- 0.25) for the Chironomus plumosus and Zn-4.22 (6.56 +/- 1.88); Cr-0.42 (0.54 +/- 0.30); Ag-0.42 (0.54 +/- 0.30); Ni-0.42 (0.54 +/- 0.30); Hg-0.04 (0.07 +/- 0.01); Pb-0.42 (0.54 +/- 0.30); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (6.56 +/- 1.88); Cd-0.42 (0.54 +/- 0.30) in the case of the Culicoides furens. With temperature as a variable the LC(50) values were observed to increase from 2.51 mg/L at 10 degrees C to 4.22 ppm at 30 degrees C and to reduce slightly to 3.72 mg/L at 35 degrees C as seen in the case of Zn. It was also observed that at 40 degrees C thermal toxicity and chemical toxicity overlapped as 100% mortality was observed in the controls. This trend was observed in all metals for both C. plumosus and C. furens. Thus indicating temperature played an important role in determining LC(50) values of toxicants.
    Matched MeSH terms: Hot Temperature/adverse effects*
  19. Vallennie V, Isa SNI, Mazlan AZ, Shaifuddin SNM
    Med J Malaysia, 2024 Mar;79(Suppl 1):82-87.
    PMID: 38555890
    INTRODUCTION: The palm oil (PO) industry is one of the most important sectors in the Malaysian economy. Workers at PO mills are, however, at risk for a number of health and safety issues, including heat stress, as the PO is one of the industries with high heat exposure. Heat stress occurs when a person's body cannot get rid of excess heat. Heat stress can result in heat cramps, heat exhaustion, heat rash, and heat stroke. It also results in physiological and psychological changes that can have an impact on a worker's performance. Therefore, this study aimed to evaluate the impact of heat stress on health-related symptoms and physiological changes among workers in a PO mill.

    MATERIALS AND METHODS: This cross-sectional study was conducted in a PO mill located in Mukah, Sarawak, Malaysia. Thirty-one workers from the four workstations (sterilizer, boiler, oil, and engine rooms) were selected as the respondents in this study. Wet Bulb Globe Thermometer was used in this study to measure the environmental temperature (WBGTin). Body core temperature (BCT), blood pressure (BP), and heart rate (HR) were recorded both before and after working in order to assess the physiological effects of heat stress on workers. A set of questionnaires were used to determine sociodemographic characteristics of the respondents and their symptoms related to heat stress. Data were then analyzed using SPSS Ver28.

    RESULTS: The WBGTin was found to be above the ACGIH threshold limit value of heat stress exposure in the engine room, sterilizer, and boiler workstations (>28.0°C). Additionally, there was a significant difference in the worker's BCT in these three workstations before and after work (p<0.05). Only the systolic BP and HR of those working at the boiler workstation showed significant difference between before and after work (p<0.05). The most typical symptoms that workers experience as a result of being exposed to heat at work include headache and fatigue. However, statistical analysis using Spearman Rho's test showed that there is no correlation between heat stress level with physiological changes and health-related symptoms among study respondents (p>0.05).

    CONCLUSION: Results of the present study confirmed that workers in PO mill were exposed to high temperatures while at work. Although the evidence indicates the physiological parameters in general are not significantly affected while working, it also demonstrated that worker's body adapts and acclimates to the level of heat. Even so, precautions should still be taken to reduce future heat exposure. It is recommended that a physiological study be carried out that focuses on cognitive function impairment to support the evidence regarding the effects of heat stress on PO mill workers.

    Matched MeSH terms: Hot Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links