Displaying publications 41 - 60 of 155 in total

Abstract:
Sort:
  1. Pandy V, Narasingam M, Vijeepallam K, Mohan S, Mani V, Mohamed Z
    Exp Anim, 2017 Aug 05;66(3):283-291.
    PMID: 28450692 DOI: 10.1538/expanim.16-0105
    In earlier ex vivo studies, we reported the biphasic effect of a methanolic extract of unripe Morinda citrifolia fruit (MMC) on dopamine-induced contractility in isolated rat vas deferens preparations. The present in vivo study was designed and undertaken to further explore our earlier ex vivo findings. This study examined the effect of the ethyl acetate fraction of a methanolic extract of unripe Morinda citrifolia Linn. fruit (EA-MMC; 5-100 mg/kg, p.o.) on the dopaminergic system using mouse models of apomorphine-induced climbing time and climbing behavior, methamphetamine-induced stereotypy (sniffing, biting, gnawing, and licking) and haloperidol-induced catalepsy using the bar test. Acute treatment with EA-MMC at a low dose (25 mg/kg, p.o.) significantly attenuated the apomorphine-induced climbing time and climbing behavior in mice. Similarly, EA-MMC (5 and 10 mg/kg, p.o.) significantly inhibited methamphetamine-induced stereotyped behavior in mice. These results demonstrated that the antidopaminergic effect of EA-MMC was observed at relatively lower doses (<25 mg/kg, p.o.). On the other hand, EA-MMC showed dopaminergic agonistic activity at a high dose (3,000 mg/kg, p.o.), which was evident from alleviation of haloperidol (a dopamine D2 blocker)-induced catalepsy in mice. Therefore, it is concluded that EA-MMC might possess a biphasic effect on the dopaminergic system, i.e., an antagonistic effect at lower doses (<25 mg/kg, p.o.) and an agonistic effect at higher doses (>1,000 mg/kg, p.o.). However, further receptor-ligand binding assays are necessary to confirm the biphasic effects of M. citrifolia fruit on the dopaminergic system.
    Matched MeSH terms: Mice, Inbred ICR
  2. Chew CC, Ng S, Chee YL, Koo TW, Liew MH, Chee EL, et al.
    Invest New Drugs, 2017 08;35(4):399-411.
    PMID: 28285369 DOI: 10.1007/s10637-017-0447-y
    Coadministration of diclofenac and sunitinib, tyrosine kinase inhibitor, led to sex-divergent pharmacokinetic drug-drug interaction outcomes. Male and female mice were administered 60 mg/kg PO sunitinib alone (control groups) or with 30 mg/kg PO diclofenac. Sunitinib concentration in plasma, brain, kidney and liver were determined by HPLC and non-compartmental pharmacokinetic parameters calculated. In male mice, diclofenac decreased AUC0→∞ 38% in plasma (p mice. In brain, sunitinib exposure decreased 46% (p mice and 30% in kidney (p mice, probably owing to effects on efflux transporters. Sunitinib displayed sex-divergent DDI with diclofenac with probable clinical translatability due to potential different effects in male and female patients requiring careful selection of the NSAID and advanced TDM to implement a personalized treatment.
    Matched MeSH terms: Mice, Inbred ICR
  3. Liew MH, Ng S, Chew CC, Koo TW, Chee YL, Chee EL, et al.
    Invest New Drugs, 2017 04;35(2):145-157.
    PMID: 28070719 DOI: 10.1007/s10637-016-0415-y
    The sex-divergent pharmacokinetics and interaction of tyrosine kinase inhibitor sunitinib with paracetamol was evaluated in male and female mice. Mice (control groups) were administered 60 mg/kg PO sunitinib alone or with 200 mg/kg PO paracetamol (study groups). Sunitinib concentration in plasma, brain, kidney and liver were determined and non-compartmental pharmacokinetic analysis performed. Female control mice showed 36% higher plasma sunitinib AUC0→∞, 31% and 27% lower liver and kidney AUC0→∞ and 2.2-fold higher AUC0→∞ in brain (all p mice. Paracetamol decreased 29% plasma AUC0→∞ (p mice and remained unchanged in female mice. In male and female mice, it decreased liver (15%, 9%), kidney (15%, 20%) and brain (47%, 50%) AUC0→∞ (p mice (p 
    Matched MeSH terms: Mice, Inbred ICR
  4. Tan NH, Wong KY, Tan CH
    J Proteomics, 2017 03 22;157:18-32.
    PMID: 28159706 DOI: 10.1016/j.jprot.2017.01.018
    The venom proteome of Naja sputatrix (Javan spitting cobra) was elucidated through reverse-phase HPLC, nano-ESI-LCMS/MS and data mining. A total of 97 distinct protein forms belonging to 14 families were identified. The most abundant proteins are the three-finger toxins (3FTXs, 64.22%) and phospholipase A2 (PLA2, 31.24%), followed by nerve growth factors (1.82%), snake venom metalloproteinase (1.33%) and several proteins of lower abundance (<1%) including a variety of venom enzymes. At subproteome, the 3FTx is dominated by cytotoxins (48.08%), while short neurotoxins (7.89%) predominate over the long neurotoxins (0.48%) among other neurotoxins of lesser toxicity (muscarinic toxin-like proteins, 5.51% and weak neurotoxins, 2.26%). The major SNTX, CTX and PLA2 toxins were isolated with intravenous median lethal doses determined as 0.13, 1.06 and 0.50μg/g in mice, respectively. SABU, the Indonesia manufactured homologous tri-specific antivenom could neutralize the CTX and PLA2 fraction with moderate potency (potency=0.14-0.16mg toxin per ml antivenom). The SNTX, however, was very poorly neutralized with a potency level of 0.034mg/ml, indicating SNTX as the main limiting factor in antivenom neutralization. The finding helps elucidate the inferior efficacy of SABU reported in neutralizing N. sputatrix venom, and supports the call for antivenom improvement.

    BIOLOGICAL SIGNIFICANCE: The Javan spitting cobra, Naja sputatrix is by itself a unique species and should not be confused as the equatorial and the Indochinese spitting cobras. The distinction among the spitting cobras was however unclear prior to the revision of cobra systematics in the mid-90's, and results of some earlier studies are now questionable as to which species was implicated back then. The current study successfully profiled the venom proteome of authenticated N. sputatrix, and showed that the venom is made up of approximately 64% three-finger toxins (including neurotoxins and cytotoxins) and 31% phospholipases A2 by total venom proteins. The findings verified that the paralyzing components in the venom i.e. neurotoxins are predominantly the short-chain subtype (SNTX) far exceeding the long-chain subtype (LNTX) which is more abundant in the venoms of monocled cobra and Indian common cobra. The neurotoxicity of N. sputatrix venom is hence almost exclusively SNTX-driven, and effective neutralization of the SNTX is the key to early reversal of paralysis. Unfortunately, as shown through a toxin-specific assay, the immunological neutralization of the SNTX using the Indonesian antivenom (SABU) was extremely weak, implying that SABU has limited therapeutic efficacy in treating N. sputatrix envenomation clinically. From the practical standpoint, actions need to be taken at all levels from laboratory to production and policy making to ensure that the shortcoming is overcome.

    Matched MeSH terms: Mice, Inbred ICR
  5. Mohamad Shalan NAA, Mustapha NM, Mohamed S
    Regul Toxicol Pharmacol, 2017 Feb;83:46-53.
    PMID: 27871867 DOI: 10.1016/j.yrtph.2016.11.022
    Noni (Morinda citrifolia) leaf and fruit are used as food and medicine. This report compares the chronic toxicity of Noni fruit and edible leaf water extracts (two doses each) in female mice. The 6 months study showed the fruit extract produced chronic toxicity effects at the high dose of 2 mg/ml drinking water, evidenced through deteriorated liver histology (hepatocyte necrosis), reduced liver length, increased liver injury marker AST (aspartate aminotransferase) and albumin reduction, injury symptoms (hypoactivity, excessive grooming, sunken eyes and hunched posture) and 40% mortality within 3 months. This hepatotoxicity results support the six liver injury reports in humans which were linked to chronic noni fruit juice consumption. Both doses of the leaf extracts demonstrated no observable toxicity. The hepatotoxicity effects of the M. citrifolia fruit extract in this study is unknown and may probably be due to the anthraquinones in the seeds and skin, which had potent quinone reductase inducer activity that reportedly was 40 times more effective than l-sulforaphane. This report will add to current data on the chronic toxicity cases of Morinda citrifolia fruit. No report on the chronic toxicity of Morinda citrifolia fruit in animal model is available for comparison.
    Matched MeSH terms: Mice, Inbred ICR
  6. Ali AH, Sudi S, Basir R, Embi N, Sidek HM
    J Med Food, 2017 Feb;20(2):152-161.
    PMID: 28146408 DOI: 10.1089/jmf.2016.3813
    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.
    Matched MeSH terms: Mice, Inbred ICR
  7. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Mice, Inbred ICR
  8. Mohd Fazirul, M., Sharaniza, A.R., Norhazlin, J.M.Y., Wan Hafizah, W.J., Razif, D., Froemming, G.R.A., et al.
    MyJurnal
    Cryopreservation by vitrification has been widely used in Assisted Reproductive Technology (ART) to preserve embryos for an extended period of time. However, the effect of vitrification on development of the embryos is lacking. Therefore, understanding on vitrification effects on embryonic proteins, especially those involved in preimplantation development is crucial to provide high quality embryos for further usage. In this study, XIAP and S6K1 protein expressions following vitrification was investigated, since they have been implicated in diverse cellular processes including cell growth, migration, proliferation, differentiation, survival and development of preimplantation embryos via the PI3K pathway. Embryos were obtained from superovulated female ICR mice which were mated with fertile males. The embryos were harvested at the 2-cell stage and cultured until blastocyst stage. Blastocysts were then vitrified in ESF40 cryoprotectant. Western blot was carried out to determine the expression of XIAP and S6K1 proteins. The results showed the expression of XIAP and S6K1 significantly decreased in vitrified blastocyst compared to the control. This indicates that blastocyst vitrification may impact developmental competence through the activation of apoptotic pathways.
    Matched MeSH terms: Mice, Inbred ICR
  9. Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, et al.
    PeerJ, 2017;5:e3887.
    PMID: 29018620 DOI: 10.7717/peerj.3887
    BACKGROUND: Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

    METHODS: TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone.

    RESULTS: The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection.

    DISCUSSION: Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.

    Matched MeSH terms: Mice, Inbred ICR
  10. Norazsida, R., Pakeer, O., Taher, M.
    MyJurnal
    This study was conducted to evaluate the phytochemical contents and antimalarial properties of the oils extracted from the leaves of Malaysian Plectranthus amboinicus in mice infected with Plasmodium berghei. The essential oils were extracted and prepared by using steam distillation technique and subjected to phytochemical screening by using GC-MS. Antimalarial activity of different extract doses of the essential oil was tested in vivo in ICR mice infected with Plasmodium berghei (PZZ1/100) during early, established and residual infections. In all, 5 compounds made up 88.34% of total oil and the major chemical compounds were carvacrol (85.14%), thymoquinone (1.65%), terpinen-4-ol (0.70%), octenol (0.62%) and thymol (0.23%). Antimalarial assay showed this essential oil as a potential prophylactic agent with the percentage chemosuppression of 45.23%, 18.28%, 45.38% and 58.26% while treated with 50, 200, 400 and 1000 µL/kg respectively of essential oil and curative agent with percentage of chemo suppression of 54.10%, 47.35%, 56.75% and 65.38% while treated with the above dose of essential oil. Statistically no reduction of parasitemia was calculated for suppressive test. The extract has prophylactic and curative effects on P.berghei in mice
    Matched MeSH terms: Mice, Inbred ICR
  11. Omar H, Nordin N, Hassandarvish P, Hajrezaie M, Azizan AHS, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:1353-1365.
    PMID: 28496305 DOI: 10.2147/DDDT.S120564
    Actinodaphne sesquipedalis
    Hook. F. Var. Glabra (Kochummen), also known as "Medang payung" by the Malay people, belongs to the Lauraceae family. In this study, methanol leaf extract ofA. sesquipedaliswas investigated for their acute toxicity and gastroprotective effects to reduce ulcers in rat stomachs induced by ethanol. The rats were assigned to one of five groups: normal group (group 1), ulcer group (group 2), control positive drug group (group 3) and two experimental groups treated with 150 mg/kg (group 4) and 300 mg/kg (group 5) of leaf extract. The rats were sacrificed an hour after pretreatment with extracts, and their stomach homogenates and tissues were collected for further evaluation. Macroscopic and histological analyses showed that gastric ulcers in rats pretreated with the extract were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate of >70% was detected in rats treated with both doses ofA. sesquipedalisextract, showing a notable protection of gastric layer. Severe destruction of gastric mucosa was prevented with a high production of mucus and pH gastric contents in both omeprazole-treated and extract-treated groups. Meanwhile, an increase in glycoprotein uptake was observed in pretreated rats through accumulation of magenta color in Periodic Acid Schiff staining assay. Analysis of gastric homogenate from pretreated rats showed a reduction of malondialdehyde and elevation of nitric oxide, glutathione, prostaglandin E2, superoxide dismutase and protein concentration levels in comparison with group 2. Suppression of apoptosis in gastric tissues by upregulation of Hsp70 protein and downregulation of Bax protein was also observed in rats pretreated with extract. Consistent results of a reduction of gastric ulcer and the protection of gastric wall were obtained for rats pretreated withA. sesquipedalisextract, which showed its prominent gastroprotective potential in rats' stomach against ethanol-induced ulcer.
    Matched MeSH terms: Mice, Inbred ICR
  12. Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, Edrada-Ebel R
    Drug Des Devel Ther, 2017;11:351-363.
    PMID: 28223778 DOI: 10.2147/DDDT.S121283
    Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg-1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg-1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model.
    Matched MeSH terms: Mice, Inbred ICR
  13. Mohamad Isa II, Abu Bakar S, Md Tohid SF, Mat Jais AM
    J Ethnopharmacol, 2016 Dec 24;194:469-474.
    PMID: 27732902 DOI: 10.1016/j.jep.2016.10.033
    ETHNOPHARMACOLOGICAL RELEVANCE: Haruan, Channa striatus, is a freshwater fish which has been well-known locally to accelerate wound healing during post-operative and post-partum periods. The fish extract also has potent anti-inflammatory and analgesic properties.

    AIM OF THE STUDY: To assess topical anti-inflammatory effect of Haruan cream on 12-0-tetradecanoylphorbol-13-acetate (TPA)-induced chronic-like dermatitis in mice.

    MATERIALS AND METHODS: Male ICR mice were randomized into six groups of five mice each: acetone (vehicle), TPA alone (negative control), three Haruan treatment groups (Haruan 1%, Haruan 5% and Haruan 10%) and hydrocortisone 1% (positive control). Briefly, both surfaces of mouse ears were applied with TPA (2.5μg/20μl acetone) for five times on alternate days and with Haruan or hydrocortisone 1% cream for the last three days. Mouse ear thickness was measured 24h after final treatment with the cream and the ears were harvested for further histological analysis and gene expression studies of TNF-α by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR).

    RESULTS: Topical application of Haruan cream had reduced the mouse ear thickness 18.1-28%) with comparable effect to the positive control. In addition, histopathological comparison had shown evident reduction in various parameters of cutaneous inflammation including dermal oedema, inflammatory cells infiltration and proliferation of epidermal keratinocytes. Furthermore, TPA application had resulted in the up-regulation of TNF-α gene expression by 353-fold, which was subsequently down-regulated by the Haruan cream (34- to 112-fold).

    CONCLUSION: Haruan is an effective topical anti-inflammatory agent in this mouse model of chronic-like dermatitis, thus suggesting its potential as a non-steroidal treatment option for chronic inflammatory dermatoses.

    Matched MeSH terms: Mice, Inbred ICR
  14. Mohamad Shalan NA, Mustapha NM, Mohamed S
    Food Chem, 2016 Dec 01;212:443-52.
    PMID: 27374554 DOI: 10.1016/j.foodchem.2016.05.179
    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery.
    Matched MeSH terms: Mice, Inbred ICR
  15. Pandy V, Khan Y
    Exp Anim, 2016 Nov 1;65(4):437-445.
    PMID: 27333840
    Morinda citrifolia L. commonly known as noni or Indian mulberry belongs to the family Rubiaceae. Noni fruit juice has recently become a very popular remedy for the treatment of several diseases, including psychiatric disorders. This study aimed to investigate the anticraving effect of Tahitian Noni® Juice (TNJ) against ethanol seeking behavior in ICR male mice using the conditioned place preference (CPP) test. The CPP procedure consisted of four phases: preconditioning, conditioning, extinction, and reinstatement. During conditioning, intraperitoneal (i.p.) injections of ethanol (2 g/kg body weight (bw)) and normal saline (10 ml/kg bw) were given on alternate days for 12 days. Then, the animals were subjected to extinction trials for the next 12 days to weaken CPP. Finally, CPP was reinstated in the extinguished animals by a single low-dose priming injection of ethanol (0.4 g/kg bw, i.p.). The effect of TNJ (as a source of drinking water) on different phases of ethanol CPP in mice was studied. TNJ-treated mice showed a significant reduction in ethanol seeking behavior in the CPP test. The reference drug, acamprosate (ACAM) also showed a similar effect in the CPP test. The outcome of this study suggests that TNJ is effective in attenuating ethanol craving in mice and could be utilized for the treatment of alcohol dependence. Further clinical studies in this direction are warranted to support the present preclinical findings.
    Matched MeSH terms: Mice, Inbred ICR
  16. Tan SY, Wong MM, Tiew AL, Choo YW, Lim SH, Ooi IH, et al.
    Cancer Chemother Pharmacol, 2016 10;78(4):709-18.
    PMID: 27495788 DOI: 10.1007/s00280-016-3120-9
    PURPOSE: Pharmacokinetic interaction of sunitinib with diclofenac, paracetamol, mefenamic acid and ibuprofen was evaluated due to their P450 mediated metabolism and OATP1B1, OATP1B3, ABCB1, ABCG2 transporters overlapping features.

    METHODS: Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed.

    RESULTS: Ibuprofen halved sunitinib plasma concentration in female mice (p mice (p mice showed 45 and 25 % higher plasma concentrations than male mice which were 27 % lower in mefenamic acid female mice. Paracetamol increased 2.2 (p mice that were lower in female mice (p mice that were higher than in female mice (p mice had 35 % higher sunitinib brain concentration than male mice but the concentration decreased 37, 33, 10 and 57 % in the diclofenac, paracetamol, mefenamic acid and ibuprofen (p mice (liver, brain) and female mice (liver, kidney).

    CONCLUSIONS: These results portray gender-based sunitinib pharmacokinetic differences and NSAIDs selective effects on male or female mice, with potential clinical translatability.

    Matched MeSH terms: Mice, Inbred ICR
  17. Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK
    Biomed Pharmacother, 2016 Oct;83:1303-1310.
    PMID: 27570173 DOI: 10.1016/j.biopha.2016.08.052
    Zerumbone, a bioactive sesquiterpene isolated from Zingiber zerumbet (Smith), has shown to exert antiallodynic and antihyperalgesic effects in neuropathic pain mice model in our recent study. The mechanism through which zerumbone alleviates neuropathic pain has yet to be elucidated. Thus, this study aimed to determine whether the serotonergic system, part of the descending pain modulation pathway, contributes to the antineuropathic effect of zerumbone. Participation of the serotonergic system in zerumbone-induced antiallodynia and antihyperalgesia was assessed using Dynamic Plantar Aesthesiometer von Frey test and Hargreaves plantar test respectively in chronic-constriction injury mice model. Administration of ρ-chlorophenylalanine (PCPA, 100mg/kg, i.p.) for four consecutive days to deplete serotonin (5-HT) prior to zerumbone administration blocked the antiallodynic and antihyperalgesic effects of zerumbone. Further investigation with 5-HT receptor antagonists methiothepin (5-HT1/6/7 receptor antagonist, 0.1mg/kg), WAY-100635 (5-HT1A receptor antagonist, 1mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3mg/kg) and ondansetron (5-HT3 receptor antagonist, 0.5mg/kg) managed to significantly attenuate antiallodynic and antihyperalgesic effects of zerumbone (10mg/kg). These findings demonstrate that zerumbone alleviates mechanical allodynia and thermal hyperalgesia through the descending serotonergic system via 5-HT receptors 1A, 1B, 2A, 3, 6 and 7 in chronic constriction injury neuropathic pain mice.
    Matched MeSH terms: Mice, Inbred ICR
  18. Narasingam M, Pandy V, Mohamed Z
    Exp Anim, 2016 May 20;65(2):157-64.
    PMID: 26744024 DOI: 10.1538/expanim.15-0088
    The present study was designed to investigate the effect of a methanolic extract of Morinda citrifolia Linn. fruit (MMC) on the rewarding effect of heroin in the rat conditioned place preference (CPP) paradigm and naloxone-precipitated withdrawal in mice. In the first experiment, following a baseline preference test (preconditioning score), the rats were subjected to conditioning trials with five counterbalanced escalating doses of heroin versus saline followed by a preference test conducted under drug-free conditions (post-conditioning score) using the CPP test. Meanwhile, in the second experiment, withdrawal jumping was precipitated by naloxone administration after heroin dependence was induced by escalating doses for 6 days (3×/ day). The CPP test results revealed that acute administration of MMC (1, 3, and 5 g/kg body weight (bw), p.o.), 1 h prior to the CPP test on the 12th day significantly reversed the heroin-seeking behavior in a dose-dependent manner, which was similar to the results observed with a reference drug, methadone (3 mg/kg bw, p.o.). On the other hand, MMC (0.5, 1, and 3 g/kg bw, p.o.) did not attenuate the heroin withdrawal jumps precipitated by naloxone. These findings suggest that the mechanism by which MMC inhibits the rewarding effect of heroin is distinct from naloxone-precipitated heroin withdrawal.
    Matched MeSH terms: Mice, Inbred ICR
  19. Loong SK, Mahfodz NH, Wali HA, Talib SA, Nasrah SN, Wong PF, et al.
    J Vet Med Sci, 2016 May 3;78(4):715-7.
    PMID: 26782013 DOI: 10.1292/jvms.15-0472
    Accurate identification and separation of non-classical Bordetella species is very difficult. These species have been implicated in animal infections. B. hinzii, a non-classical Bordetella, has been isolated from mice in experimental facilities recently. We isolated and characterized one non-classical Bordetella isolate from the trachea and lung of an ICR mouse. Isolate BH370 was initially identified as B. hinzii by 16S ribosomal DNA and ompA sequencing. Additionally, isolate BH370 also displayed antimicrobial sensitivity profiles similar to B. hinzii. However, analyses of nrdA sequences determined its identity as Bordetella genogroup 16. The isolation of BH370 from a healthy mouse suggests the possibility of it being a commensal. The nrdA gene was demonstrated to possess greater phylogenetic resolution as compared with 16S ribosomal DNA and ompA for the discrimination of non-classical Bordetella species.
    Matched MeSH terms: Mice, Inbred ICR
  20. Zhou L, Wang P, Zhang J, Heng BC, Tong GQ
    Zygote, 2016 Feb;24(1):89-97.
    PMID: 25672483 DOI: 10.1017/S0967199414000768
    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
    Matched MeSH terms: Mice, Inbred ICR
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links