Displaying publications 41 - 60 of 94 in total

Abstract:
Sort:
  1. Supramaniam J, Adnan R, Mohd Kaus NH, Bushra R
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):640-648.
    PMID: 29894784 DOI: 10.1016/j.ijbiomac.2018.06.043
    Magnetic nanocellulose alginate hydrogel beads are produced from the assembly of alginate and magnetic nanocellulose (m-CNCs) as a potential drug delivery system. The m-CNCs were synthesized from cellulose nanocrystals (CNCs) that were isolated from rice husks (RH) by co-precipitation method and were incorporated into alginate-based hydrogel beads with the aim of enhancing mechanical strength and regulating drug release behavior. Ibuprofen was chosen as a model drug. The prepared CNCs, m-CNCs and the alginate hydrogel beads were characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer studies (VSM). Besides the magnetic property, the presence of m-CNCs increased the integrity of the alginate hydrogel beads and the swelling percentage. The drug release study exhibited a controlled release profiles and based on the drug release data, the drug release mechanism was analyzed and discussed based on mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin.
    Matched MeSH terms: Microspheres*
  2. Lim BY, Azmi F, Ng SF
    AAPS PharmSciTech, 2024 May 13;25(5):110.
    PMID: 38740721 DOI: 10.1208/s12249-024-02826-6
    Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.
    Matched MeSH terms: Microspheres*
  3. Van Wassenbergh S, Joris I, Desclée M, Liew HJ, De Boeck G, Adriaens D, et al.
    J Exp Biol, 2016 05 15;219(Pt 10):1535-41.
    PMID: 27207955 DOI: 10.1242/jeb.131631
    Many species from several different families of fishes perform mouthbrooding, where one of the sexes protects and ventilates the eggs inside the mouth cavity. This ventilation behaviour differs from gill ventilation outside the brooding period, as the normal, small-amplitude suction-pump respiration cycles are alternated with actions including near-simultaneous closed-mouth protrusions and high-amplitude depressions of the hyoid. The latter is called churning, referring to its hypothetical function in moving around and repositioning the eggs by a presumed hydrodynamic effect of the marked shifts in volume along the mouth cavity. We tested the hypothesis that churning causes the eggs located posteriorly in the mouth cavity to move anteriorly away from the gill entrance. This would prevent or clear accumulations of brood at the branchial basket, which would otherwise hinder breathing by the parent. Dual-view videos of female Nile tilapias (Oreochromis niloticus) during mouthbrooding showed that churning involves a posterior-to-anterior wave of expansion and compression of the head volume. Flow visualisation with polyethylene microspheres revealed a significant inflow of water entering the gill slits at the zone above the pectoral fin base, followed by a predominantly ventral outflow passing the ventrolaterally flapping branchiostegal membranes. X-ray videos indicated that particularly the brood located close to the gills is moved anteriorly during churning. These data suggest that, in addition to mixing of the brood to aid its oxygenation, an important function of the anterior flow through the gills and buccal cavity during churning is to prevent clogging of the eggs near the gills.
    Matched MeSH terms: Microspheres
  4. Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, et al.
    J Biomater Sci Polym Ed, 2018 07;29(10):1168-1184.
    PMID: 29460709 DOI: 10.1080/09205063.2018.1443604
    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
    Matched MeSH terms: Microspheres*
  5. Noor Kamalia Abd Hamed, Noor Sakinah Khalid, Fatin Izyani Mohd Fazli, Muhammad Luqman Mohd Napi, Nafarizal Nayan, Mohd Khairul Ahmad
    Sains Malaysiana, 2016;45:1669-1673.
    Titanium dioxide (TiO2
    ) with various morphologies has been successfully synthesized by a simple hydrothermal method
    at 150o
    C for 10 h using titanium butoxide (TBOT) as a precursor, deionized (DI) water and hydrochloric acid (HCl) on
    a fluorine-doped tin oxide (FTO) substrate. The influences of HCl volume on structural and morphological properties
    of TiO2
    have been studied using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM),
    respectively. The result showed that several morphologies such as microsphere, microrods, nanorods and nanoflowers
    were obtained by varying the volume of hydrochloric acid. The crystallinity of titanium dioxide enhanced with the
    increasing of hydrochloric acid volume.
    Matched MeSH terms: Microspheres
  6. Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al.
    Chem Biol Interact, 2019 Feb 01;299:168-178.
    PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009
    Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
    Matched MeSH terms: Microspheres
  7. Mohan S, Raghavendran HB, Karunanithi P, Murali MR, Naveen SV, Talebian S, et al.
    ACS Appl Mater Interfaces, 2017 Mar 22;9(11):9291-9303.
    PMID: 28266827 DOI: 10.1021/acsami.6b13422
    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release of growth factors has been demonstrated to produce severe side effects on the surrounding tissues. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) incorporated three-dimensional (3D) CORAGRAF scaffolds were engineered to achieve controlled release of platelet-derived growth factor-BB (PDGF-BB) for the differentiation of stem cells within the 3D polymer network. Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and microtomography were applied to characterize the fabricated scaffolds. In vitro study revealed that the CORAGRAF-PLGA-PDGF-BB scaffold system enhanced the release of PDGF-BB for the regulation of cell behavior. Stromal cell attachment, viability, release of osteogenic differentiation markers such as osteocalcin, and upregulation of osteogenic gene expression exhibited positive response. Overall, the developed scaffold system was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications.
    Matched MeSH terms: Microspheres
  8. Wang Y, Molin DG, Sevrin C, Grandfils C, van den Akker NM, Gagliardi M, et al.
    Int J Pharm, 2016 Apr 30;503(1-2):150-62.
    PMID: 26965198 DOI: 10.1016/j.ijpharm.2016.03.002
    Poly(d,l-lactic acid) biodegradable microspheres, loaded with the drugs cisplatin and/or sorafenib tosylate, were prepared, characterized and studied. Degradation of the microspheres, and release of cisplatin and/or sorafenib tosylate from them, were investigated in detail. Incubation of the drug-carrying microspheres in phosphate buffered saline (pH=7.4) revealed slow degradation. Nevertheless, significant release of cisplatin and sorafenib tosylate from microspheres loaded with both drugs was apparent in vitro; this can be attributed to their porous structure. Supernatants from microspheres loaded with both drugs showed strong toxic effects on cells (i.e. endothelial cells, fibroblast cells and Renca tumor cells) and potent anti-angiogenic effect in the matrigel endothelial tube assay. In vivo anti-tumor effects of the microspheres were also observed, in a Renca tumor mouse model. The poly(d,l-lactic acid) microspheres containing both cisplatin and sorafenib tosylate revealed highest therapeutic efficacy, probably demonstrating that combined local administration of cisplatin and sorafenib tosylate synergistically inhibits tumor growth in situ. In conclusion, this study demonstrates the applicability of biodegradable poly(d,l-lactic acid) microspheres loaded with cisplatin and sorafenib tosylate for local drug delivery as well as the potential of these microspheres for future use in transarterial chemoembolization.
    Matched MeSH terms: Microspheres
  9. Shan L, Kadhum AAH, Al-Furjan MSH, Weng W, Gong Y, Cheng K, et al.
    Materials (Basel), 2019 Mar 10;12(5).
    PMID: 30857349 DOI: 10.3390/ma12050815
    It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.
    Matched MeSH terms: Microspheres
  10. Basri M, Ampon K, Yunus WM, Razak CN, Salleh AB
    J Chem Technol Biotechnol, 1994 Jan;59(1):37-44.
    PMID: 7764496
    A simple and effective method of lipase immobilization is described. Lipase from Candida rugosa was first modified with several hydrophobic modifiers before being adsorbed on to organic polymer beads. The soluble hydrophobic lipase derivatives adsorbed more strongly on to the various polymers as compared with the native lipase. The optimal adsorption temperature of the native and modified lipases on all the polymers was 40 degrees C. The optimal pH of adsorption was between 6 and 7. Lipase immobilized in this manner produced high catalytic recoveries which are affected by the type of modifiers, degree of modification and type of supports used. Monomethoxypolyethylene glycol (1900) activated with p-nitrophenyl chloroformate was found to be the best modifier of the enzyme at 95% modification, for adsorption to the polymers. Increasing the degree of modification of the enzyme increased the activity which was immobilized. Generally, both native and hydrophobic lipase derivatives showed higher specific activities when immobilized on polar polymers compared with non-polar polymers.
    Matched MeSH terms: Microspheres
  11. Lee KH, Lee PM, Siaw YS
    J Chem Technol Biotechnol, 1993;57(1):27-32.
    PMID: 7763683
    Aminoacylase I (EC 3.5.1.14) encapsulated in calcium alginate beads stabilized with poly-L-lysine was used for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The immobilized aminoacylase was studied with respect to operational stability, thermal stability, effects of pH and temperature and kinetic constants. The leakage of enzyme from the stabilized beads was eliminated. The immobilized enzyme retained high biological activity. The Km and Vmax values for the stabilized beads were 11.11 mmol dm-3 and 0.076 mumol min-1 respectively. The optimum pH and temperature for the hydrolysis were 6.5 and 55 degrees C respectively. Scanning electron micrographs revealed crosslinked structures on the surface of the beads. The operational performances of the beads in a batch reaction and a packed-bed bioreactor for continuous reaction were investigated. With batch reaction, only about 5% of enzyme activity was lost within ten reaction cycles and there was no significant loss of activity over 600 h of continuous operation after equilibrium was reached, and a conversion yield of about 80% was obtained.
    Matched MeSH terms: Microspheres
  12. Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A
    Int J Biol Macromol, 2017 Nov;104(Pt A):423-431.
    PMID: 28591593 DOI: 10.1016/j.ijbiomac.2017.06.010
    This paper describes the fabrication and characterization of bio-nanocomposite hydrogel beads based on Kappa-Carrageenan (κ-Carrageenan) and bio-synthesized silver nanoparticles (Ag-NPs). The silver nanoparticles were prepared in aqueous Citrullus colocynthis seed extract as both reducing and capping agent. Cross-linked κ-Carrageenan/Ag-NPs hydrogel beads were prepared using potassium chloride as the cross-linker. The hydrogel beads were characterized using XRD and FESEM. Moreover, swelling property of the hydrogel beads was investigated. The Ag release profile of the hydrogels was obtained by fitting the experimental data to power law equation. The direct visualization of the green synthesized Ag-NPs using TEM shows particle size in the range of 23±2nm. The bio-nanocomposite hydrogels showed lesser swelling behavior in comparison with pure κ-Carrageenan hydrogel. Regardless the slow Ag release, κ-Carrageenan/Ag-NPs presented good antibacterial activities against Staphylococcus aureus, Methicilin Resistant Staphylococcus aurous, Peseudomonas aeruginosa and Escherichia coli with maximum zones of inhibition 11±2mm. Cytotoxicity study showed that the bio-nanocomposite hydrogels with non-toxic effect of concentration below 1000μg/mL have great pharmacological potential and a suitable level of safety for use in the biological systems.
    Matched MeSH terms: Microspheres
  13. Sulaiman SB, Idrus RBH, Hwei NM
    Polymers (Basel), 2020 Oct 19;12(10).
    PMID: 33086577 DOI: 10.3390/polym12102404
    The gelatin microsphere (GM) provides an attractive option for tissue engineering due to its versatility, as reported by various studies. This review presents the history, characteristics of, and the multiple approaches to, the production of GM, and in particular, the water in oil emulsification technique. Thereafter, the application of GM as a drug delivery system for cartilage diseases is introduced. The review then focusses on the emerging application of GM as a carrier for cells and biologics, and biologics delivery within a cartilage construct. The influence of GM on chondrocytes in terms of promoting chondrocyte proliferation and chondrogenic differentiation is highlighted. Furthermore, GM seeded with cells has been shown to have a high tendency to form aggregates; hence the concept of using GM seeded with cells as the building block for the formation of a complex tissue construct. Despite the advancement in GM research, some issues must still be addressed, particularly the improvement of GM's ability to home to defect sites. As such, the strategy of intraarticular injection of GM seeded with antibody-coated cells is proposed. By addressing this in future studies, a better-targeted delivery system, that would result in more effective intervention, can be achieved.
    Matched MeSH terms: Microspheres
  14. Nograles N, Abdullah S, Shamsudin MN, Billa N, Rosli R
    J Biosci Bioeng, 2012 Feb;113(2):133-40.
    PMID: 22093752 DOI: 10.1016/j.jbiosc.2011.10.003
    Alginate, a natural polysaccharide, was explored in this study as an oral delivery vehicle of a mammalian expression vector into the murine intestinal mucosa. Alginate microspheres were produced through water-in-oil (W/O) emulsification method. Average diameter sizes of microspheres were 46.88 μm±3.07 μm with significant size reduction upon utilization of 1.0% Span80. Plasmid DNA (pDNA) carrying green fluorescent protein reporter gene (GFP), pVAX-GFP, was encapsulated within microspheres at efficiencies of 72.9 to 74.4%, carrying maximum load of 6 μg pDNA. Alginate microspheres demonstrated shrinkage in pH 1.2 and swelling in pH 9.0 with pDNA release about twice the amount released in acidic environment. Oral delivery of pVAX-GFP loaded-microspheres, at 50 μg, 100 μg and 150 μg dose, was performed on BALB/c mice. Tissue biodistribution, investigated through flow cytometric analysis, demonstrated GFP positive intestinal cells (<1.0%) with 1.3-fold higher levels for the 100 μg dose; therefore suggesting feasibility of the approach for oral gene delivery and vaccination.
    Matched MeSH terms: Microspheres
  15. Bera H, Kumar S, Maiti S
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):149-159.
    PMID: 29932998 DOI: 10.1016/j.ijbiomac.2018.06.085
    Olive oil-entrapped diethanolamine-modified high-methoxyl pectin (DMP)-gellan gum (GG)-bionanofiller composites were developed for controlled intragastric delivery of metformin HCl (MFM). DMP had a degree of amidation of 48.7% and was characterized further by FTIR, XRD and DSC analyses. MFM-loaded composites were subsequently accomplished by green synthesis via ionotropic gelation technique using zinc acetate as cross-linker. The thermal, X-ray and infrared analyses suggested an environment in the composites compatible with the drug, except certain degree of attenuation in drug's crystallinity. Scanning electron microscopy revealed almost spherical shape of the composites. Depending upon the mass ratios of GG:DMP, types of nanofiller (neusilin/bentonite/Florite) and oil inclusion, the composites exhibited variable drug encapsulation efficiency (DEE, 50-85%) and extended drug release behaviours (Q8h, 69-94%) in acetate buffer (pH 4.5). The optimized oil-entrapped Florite R NF/GG: DMP (1:1) composites eluted MFM via case-II transport mechanism and its drug release data was best fitted in zero-order kinetic model. The optimized formulation demonstrated excellent gastroretentive properties and substantial hypoglycemic effect in streptozotocin-induced diabetic rats. These novel hybrid matrices were thus found suitable for controlled intragastric delivery of MFM for the management of type 2 diabetes.
    Matched MeSH terms: Microspheres
  16. Rehman S, Ranjha NM, Shoukat H, Madni A, Ahmad F, Raza MR, et al.
    AAPS PharmSciTech, 2021 Jul 26;22(6):209.
    PMID: 34312763 DOI: 10.1208/s12249-021-02082-y
    The aim of present research aims to fabricate a system of enteric coating of hydrogel beads with pH-sensitive polymer, which shows solubility at pH > 7, and explore their potential to target the colon for drug delivery. Hydrogel beads were fabricated through the extrusion-dripping technique followed by ion gelation crosslinking. Moreover, freeze-thaw cycle was implemented for crosslinking of polyvinyl alcohol (PVA)/Ca-alginate blend beads. The oil-in-oil solvent evaporation method was adopted for the Eudragit coating of hydrogel beads using different coat: core ratios (4:1 or 8:1). Coated and uncoated hydrogel beads were evaluated by in vitro physicochemical properties, swelling and drug release behaviours, and in vivo pharmacokinetics, swelling, and toxicity evaluation. Diclofenac sodium was loaded as an experimental drug. Drug entrapment efficiency for the PVA/Ca-alginate beads was calculated as 98%, and for Ca-alginate beads, it came out to a maximum of 74%. Drug release study at various pH suggested that, unlike uncoated hydrogel beads, the coated beads delay the release of diclofenac sodium in low pH of the gastric and intestinal environment, thus targeting the colon for the drug release. It was concluded that Eudragit S-100-coated hydrogel beads could serve as a more promising and reliable way to target the colon for drug delivery.Graphical abstract.
    Matched MeSH terms: Microspheres
  17. Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N
    Int J Biol Macromol, 2020 Jun 15;153:1035-1046.
    PMID: 31794824 DOI: 10.1016/j.ijbiomac.2019.10.233
    Alginate microspheres (AMs) have received much attention as a novel drug delivery system owing to various advantages of alginate such as inexpensiveness, nontoxicity, biocompatibility and biodegradability. The well-designed fabrication method is essential to achieve desired AMs suitable for specific drug delivery system. Reports on AMs preparation techniques have increased rapidly in the last decade. A number of synthesis parameters have been investigated for the improvement of physical, chemical and biological properties of AMs. Hence, this review summarizes the work to date on the fabrication techniques of AMs for drug delivery system, including spray-drying, extrusion and emulsification/gelation technique. Besides, the influence of various factors such as alginate concentration, oil phase, surfactant, cross-linker concentrations, cross-linking time, stirring speed, model drug and drug content on the morphologies, properties and encapsulation efficiency (EE) of AMs via extrusion and emulsification/gelation technique are summarized. Before embarking on the development of any drug delivery system, a thorough understanding of drug release mechanism and factors that impact the drug release profile are essential, which are also covered in this review.
    Matched MeSH terms: Microspheres
  18. Zeeshan F, Peh KK, Tan YT
    AAPS PharmSciTech, 2009;10(3):850-7.
    PMID: 19554454 DOI: 10.1208/s12249-009-9278-2
    Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble model drug. The pellets were produced using an extrusion-spheronization technique. The drug-loaded pellets were coated to extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability, tensile strength, and disintegration time of the tablets were within the USP specifications.
    Matched MeSH terms: Microspheres
  19. Wan Ngah WS, Kamari A, Koay YJ
    Int J Biol Macromol, 2004 Jun;34(3):155-61.
    PMID: 15225987
    The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.
    Matched MeSH terms: Microspheres
  20. Aziz FFA, Jalil AA, Hassan NS, Hitam CNC, Rahman AFA, Fauzi AA
    J Hazard Mater, 2021 Jan 05;401:123277.
    PMID: 33113710 DOI: 10.1016/j.jhazmat.2020.123277
    Multiple contaminants including heavy metals and phenolic compounds are normally co-exist in wastewater, which caused the treatment process is rather complicated. Herein, the synergistic photoredox of Cr(VI) and p-cresol (pC) by innovative fibrous silica zirconia (FSZr) photocatalyst was reported. The high surface area of FSZr comprised of microspheres with a bicontinuous concentric lamella structure morphology consisted of silica, while its core consisted of ZrO2 structure. The rearrangement of FSZr framework increased the crystallinity, formed Si-O-Zr bonds and narrowed the band gap of ZrO2 for enhanced of photoredox of Cr(VI) and pC. Compared to the reaction, the photoredox efficiency of FSZr for removing Cr(VI) and pC in simultaneous system was found to be 96 % and 59 %, respectively which are higher than that in its single system owing to the efficient electron-hole charge separation. Phenolic compound with high degree of electron donating group gave beneficial effect to photoreduction of Cr(VI). Consequently, a proposed mechanism involving multi-photoredox pathway were proposed based on photoredox reaction and scavengers studies. FSZr sustained the simultaneous photoredox activities after five runs demonstrating its possibility to be use in the wastewater treatment of various pollutants.
    Matched MeSH terms: Microspheres
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links